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Heat and Learning†

By R. Jisung Park, Joshua Goodman, Michael Hurwitz,  
and Jonathan Smith*

We demonstrate that heat inhibits learning and that school air con-
ditioning may mitigate this effect. Student fixed effects models using 
10 million students who retook the PSATs show that hotter school 
days in the years before the test was taken reduce scores, with extreme 
heat being particularly damaging. Weekend and summer tempera-
tures have little impact, suggesting heat directly disrupts learning 
time. New nationwide, school-level measures of air conditioning pen-
etration suggest patterns consistent with such infrastructure largely 
offsetting heat’s effects. Without air conditioning, a 1​°​F hotter school 
year reduces that year’s learning by 1 percent. Hot school days dis-
proportionately impact minority students, accounting for roughly 
5 percent of the racial achievement gap. (JEL I21, I24, J15, Q54)

Hotter countries tend to be poorer, with each 1​°​F increase in average tempera-
ture associated with 4.5 percent lower GDP per capita (Dell, Jones, and Olken 

2009). Students in hotter places also tend to exhibit lower levels of standardized 
achievement for any given age or grade. Across countries, a 1​°​F increase in average 
annual temperature is associated with 0.02 standard deviation lower math scores 
for 15-year-olds taking the 2012 Programme for International Student Assessment 
(PISA), as shown in the top panel of Figure 1. Within the United States, students 
in the hottest decile of the county-level climate distribution score on average 
0.12 standard deviations worse on third through eighth grade math tests, as seen 
in the bottom panel of Figure 1. Our primary contributions are to show that part of 
the cross-sectional relationship between temperature and academic achievement is 
causal, that heat’s cumulative learning impacts may be mitigated by school air con-
ditioning, and that differential heat exposure and learning impacts of heat account 
for a nontrivial portion of racial achievement gaps in the United States.

Why might cumulative heat exposure reduce human capital accumulation? The 
contemporary US context of this study decreases the relevance of channels often 
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studied in less developed settings such as health and disease burden (Bleakley 
2010, Cho 2017), agricultural income and the opportunity costs of schooling (Shah 
and Steinberg 2017), and institutional norms and political stability more broadly 
(Acemoglu, Johnson, and Robinson 2001; Dell, Jones, and Olken 2012; Hsiang, 
Burke, and Miguel 2013). We provide evidence consistent with the possibility that 
in the United States, heat most likely affects learning directly by altering human 
physiology and cognition. Even moderately elevated temperatures can impair 
decision-making and cause substantial discomfort, and short-term impacts of heat 
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Figure 1. Climate and Achievement across Geographies

Notes: The above figure shows a scatterplot of mean 2012 PISA (panel A) or SEDA (panel B) math scores and 
average annual temperature by country or US county. Average annual temperatures are measured over the period 
1980–2011. Panel B shows a binned percentile plot of standardized third–eighth grade math scores (2009–2013) 
by percentile of the county-level average temperature distribution, with scores standardized by subject, grade, and 
year as in Fahle et al. (2017). Also shown is a fitted line and slope coefficient from a bivariate regression of scores 
on temperatures, using heteroskedasticity robust standard errors.
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on cognition have been extensively documented in laboratory settings (Mackworth 
1946; Seppänen, Fisk, and Lei 2006). Hot classrooms may thus reduce the effec-
tiveness of instructional time through physiological impacts on both students and 
teachers, making it harder for both to focus and accomplish a given set of learning 
tasks. In cases of extreme heat, schools may close or dismiss students early, directly 
reducing the amount of instructional time.

To estimate the causal impact of cumulative heat exposure on human capital accu-
mulation, we link local daily weather data to the test scores of 10 million American 
students from high school classes between 2001 and 2014 who took the PSAT (a 
nationally standardized exam designed to assess students’ cumulative learning in 
high school) at least twice.1 We also construct the first nationwide measures of 
school-level air conditioning penetration in the United States by surveying students 
and guidance counselors across the country about heat-related conditions in approx-
imately 12,000 high schools. Student fixed effects regressions identify the impact of 
heat exposure during the prior school year by leveraging within-student variation in 
temperature over multiple test takes. Our identification strategy relies on the prem-
ise that variation in temperature over successive school years for a given student is 
uncorrelated with unobserved determinants of learning. We provide evidence con-
sistent with that assumption, showing that selection into test-taking and retaking is 
not endogenous to temperature, even when controlling for regional trends in warm-
ing and secular changes in school quality or student composition.

We then generate three primary findings about the impact of heat on human cap-
ital accumulation. First, cumulative heat exposure reduces the rate of learning. A 
1​°​F hotter school year in the year prior to the test lowers scores by approximately 
0.2 percent of a standard deviation, or slightly less than 1 percent of an average 
student’s learning gain over a school year.2 Extreme heat is particularly damaging. 
Relative to school days with temperatures in the 60s (​°​F), each additional school day 
with temperatures in the 90s (​°​F) reduces achievement by one-sixth of a percent of 
year’s worth of learning. A day above 100 ​°​F has an effect that is up to 50 percent 
larger. These effects are precisely estimated, are robust to controlling for test-day 
weather, and are not predicted by heat exposure in the year following the test. Only 
school-day exposure to higher temperatures affects test scores. Hot summers and 
weekends have little impact on achievement, and controlling for such exposure does 
not shrink the magnitude of impact of hot school days. This suggests that heat’s 
disruption of instructional time is responsible for the observed drop in test scores. 
That our effects are robust to controlling for heat-driven labor market shocks and 
pollution levels suggests that economic and health-related channels observed in 
other settings are likely not of first-order importance in this context (Cho 2017; 
Garg, Jagnani, and Taraz 2016).

Importantly, these learning effects appear to be cumulative and persistent beyond 
just the year prior to the test. Hot school days two, three, and four years prior to the 
test also lower scores, so that the cumulative effect of elevated temperature over 

1 The PSAT is designed to be a test of knowledge and not of general intelligence or IQ.
2 On average, students score 0.3 standard deviations higher on their second PSAT take than their first PSAT 

taken one year prior.
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multiple school years is substantially larger than that of a single school year. This 
suggests that any compensatory investments made by students, parents, or teachers 
in response to such heat shocks do not fully offset their impacts. Heat-related dis-
ruptions thus appear to reduce the rate of human capital accumulation over time. 
The implied magnitudes are nontrivial, particularly when considering predicted 
effects of climate change. For the average student, a sustained increase in tempera-
ture of 3.6​°​F (2​°​C) lowers achievement gains by 2 percent of a standard deviation, 
or approximately 7 percent of an average year’s worth of learning. This is despite 
relatively high average levels of income and air conditioning in the United States 
compared to most other countries.

Our study shows that cumulative heat exposure can reduce the rate of human 
capital accumulation and thus speaks to a long-standing debate on the relationship 
between geography and economic development (Acemoglu, Johnson, and Robinson 
2001; Rodrik, Subramanian, and Trebbi 2004; Dell, Jones, and Olken 2012). A grow-
ing literature shows consistent evidence that the short-term impact of heat on exam 
days reduces cognitive performance but has not determined whether such effects 
are transitory or lead to permanent reductions in the stock of human capital (Graff 
Zivin, Hsiang, and Neidell 2018; Park forthcoming). Studies that provide evidence 
of medium-term impacts have occurred in contexts where heat’s direct physiolog-
ical effects are hard to distinguish from other channels such as agricultural output 
or health status (Cho 2017; Garg, Jagnani, and Taraz 2016). The only other paper 
that precisely identifies the impact of cumulative heat exposure on human capital 
accumulation is Isen, Rossin-Slater, and Walker (2017), which focuses on in utero 
exposure and thus identifies a very different channel from the learning channel we 
study here. Our results are consistent with a long-standing, lab-based literature doc-
umenting adverse cognitive impacts of hot temperature, the long-run implications of 
which have not previously been tested in real-world learning environments.

Our second major finding is evidence consistent with the possibility that school 
air conditioning mitigates the impacts of heat on learning. We generate the first 
nationwide, school-specific air conditioning penetration rates based on survey ques-
tions sent to students and high school counselors. We then show that, in the cross 
section, school air conditioning penetration reported in 2016 is strongly related to 
heterogeneity in heat’s effects, such that hot school days reduce learning by one-fifth 
as much in fully air-conditioned schools as they do in schools with no air condi-
tioning. To better identify the mitigating effect of school air conditioning, we use 
a triple-difference strategy that combines our within-student comparisons with 
within-school changes over time in reported air conditioning status. This approach 
reveals that later cohorts in schools that increased air conditioning penetration expe-
rienced reduced heat-related learning impacts relative to earlier cohorts in those 
same schools and relative to cohort differences across schools that did not increase 
air conditioning penetration. Both variation in the cross section and over time are 
thus consistent with the hypothesis that school air conditioning reduces the neg-
ative impacts of hot school days. Our estimates, if taken as causal and combined 
with estimates of the achievement-earnings relationship from Chetty et al. (2011), 
suggest that in hot areas such as Houston, Texas, the present value of air condi-
tioning is approximately $2.1 million per year for each 1,000-student high school. 
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Global climate change means, however, that the private return to air conditioning 
will increase by approximately $500,000 per school for the median US school by 
2040–2050 according to our back-of-the-envelope calculations.3

That school air conditioning may improve learning speaks directly to a recent 
literature showing that school resources can have positive impacts on educational 
achievement (Jackson, Johnson, and Persico 2015; Lafortune, Rothstein, and 
Schanzenbach 2018). Existing studies that focus on school infrastructure fund-
ing generally estimate the impact of broad funding packages and not targeted 
upgrades to specific school facilities (Cellini, Ferreira, and Rothstein 2010).4 Two 
recent studies finding positive achievement impacts of school infrastructure invest-
ment generally are consistent with the positive impacts of school air conditioning 
that we document. A comprehensive school construction project in New Haven, 
Connecticut that included installation of air conditioning in schools that previously 
did not have air conditioning raised reading scores by 15 percent of a standard devi-
ation (Neilson and Zimmerman 2014). Major school building and renovation efforts 
in the Los Angeles Unified School District raised reading and math scores between 
5 and 10 percent of a standard deviation, most likely due to “reduced distractions 
from inadequate heating, cooling, or other aspects of the physical environment” 
(Lafortune and Schönholzer 2018). The lack of achievement impact from recent 
school infrastructure investment in Texas is consistent with our data suggesting most 
schools in that state were likely air-conditioned to begin with (Martorell, Stange, 
and McFarlin 2016). Our paper is the first to attempt to isolate the impact of school 
air conditioning from other aspects of school infrastructure. These results also high-
light the fact that small reduced-form impacts of heat in developed countries may 
mask large biological and welfare impacts, underscoring the importance of taking 
adaptations such as air conditioning into account when studying the relationship 
between climatic variables and economic outcomes (Graff Zivin and Neidell 2014; 
Deschênes, Greenstone, and Shapiro 2017).

Our third and final result is that the temperature environment in which learning 
occurs appears to be a meaningful contributor to racial and geographic achievement 
gaps. Black and Hispanic students’ learning is roughly three times as inhibited by 
the prior school year’s heat compared to the learning of white students. We estimate 
that between 3 and 7 percent of the gap in PSAT scores between white students 
and black and Hispanic students can be explained by differences in the temperature 
environment experienced by students in each group. These disparities appear to be 
driven both by school-level investments, such as differential air conditioning pen-
etration, as well as the geographic distribution of racial minorities whereby black 
and Hispanic students overwhelmingly reside in hotter locations than white stu-
dents. This is consistent with the theory of residential sorting, which suggests that 

3 Episodes of acute heat exposure are becoming more frequent in many parts of the world, and are predicted to 
increase at an accelerating rate (Stocker, et al. 2014). Importantly, much of this warming will occur in places and 
during times of year that do not currently feature such temperature extremes, meaning that many local institutional 
arrangements—whether in terms of the timing of examinations or policies regarding protective built infrastructure 
(e.g., air conditioning)—might not be efficiently adapted to new expected climate distributions.

4 A notable exception is Stafford (2015), who provides evidence that mold remediation and ventilation improve-
ments had positive impacts on performance in 66 Texas elementary schools.
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lower income individuals are more likely to sort into areas with lower levels of envi-
ronmental amenities and local public goods (Tiebout 1956, Roback 1982, Banzhaf 
and Walsh 2008). We also find that historically cool places experience much larger 
impacts per unit of warming. This suggests that without high average levels of adap-
tation in the South, the North-South achievement gap would be even larger than it 
is currently. Minority students appear, however, less likely to have school air condi-
tioning even in a given historical climate.

That heat has larger impacts on black and Hispanic students and accounts for a 
nontrivial proportion of the racial achievement gap are facts not documented previ-
ously in the vast literature on racial disparities in educational outcomes (Jencks and 
Phillips 2011; Duncan and Murnane 2011; Fryer 2011). Most empirical analyses 
in this literature have focused on social factors such as teacher quality, racial bias, 
or neighborhood culture, and have more rarely explored disparities in the physical 
environment. “Environmental factors” in this literature often explicitly or implicitly 
refer to the social environment or use the term to denote nongenetic factors. The 
few studies that assess the impact of physical environmental factors on achievement 
are either nonidentified cross-sectional analyses (Durán-Narucki 2008) or assess-
ments of short-run outcomes such as cognitive performance during a hot period 
(Mackworth 1946; Seppänen, Fisk, and Lei 2006; Park forthcoming). A substantial 
proportion of the variation in achievement remains unexplained by traditional socio-
economic variables (Reardon, Kalogrides, and Shores 2017). Our findings suggest 
that the physical factors such as temperature and the built environment may play a 
larger role in explaining disparities in achievement than previously realized.

Our empirical strategy relies on temperature fluctuations across multiple years as 
opposed to multiple decades. Our central estimates of the impact of heat and of air  
conditioning as a mitigating factor are thus driven by these short- to medium-term 
changes in the efficacy of instructional time. Longer-term exposure to heat may 
change students’ study and other behaviors in ways we do not capture. School air  
conditioning may, for example, be a workplace amenity capable of attracting higher 
quality teachers and thus affecting student outcomes over time through an improved 
teacher workforce. Our estimates will not capture such longer-term impacts of a 
school’s physical environment on student outcomes and thus may underestimate the 
total impacts of such investments.

I.  Data and Empirical Strategy

A. Data

We combine three primary data sources on test scores, temperature, and school 
air conditioning. Test score data come from the College Board, which administers 
the PSAT exam to millions of American high school students annually. The PSAT 
consists primarily of a reading and a math section.5 The test is offered once a year 
roughly during the third week of October, and most students first take it in tenth or 

5 A writing section has been added in more recent years. Basic scientific concepts and history are assessed as 
part of the reading comprehension section.
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eleventh grade, though some start as early as ninth grade.6 Students take and can 
retake the PSAT for a variety of reasons, including preparation for the SAT college 
entrance exam, qualification for National Merit Scholarships, and providing infor-
mation about their college readiness to themselves and their schools. The PSAT 
has multiple advantages over other tests used to study the impact of heat on cogni-
tive skills: the test is given once a year on a fixed date with advanced registration 
required, limiting the scope of endogenous taking or timing decisions; proctoring is 
nationally harmonized and the test is centrally graded, limiting potential for endoge-
nous score manipulation of any sort (Dee et al. 2016, Park forthcoming); and the test 
is designed to assess cumulative progress on skills learned during secondary school 
rather than generalized intelligence, making it arguably better-suited for assessing 
the effects of formal schooling.

We have test scores and dates from the universe of PSAT-takers (those taking 
them for the first time and those taking a retest) from high school classes between  
2001 and 2014. Our primary outcome is a student’s combined math and reading 
score, standardized by test administration. The student-level data also contain basic 
demographic information such as gender, race, parental education, and residential 
zip code, which we use to assign students zip code-level mean incomes as reported 
by the Internal Revenue Service. High school identifiers allow us to assign students 
to testing locations and other school-level characteristics. We observe only the most 
recent high school attended and thus permanently assign that location to each stu-
dent across all PSAT takes. Doing so reduces concerns about potentially endoge-
nous migration but may generate measurement error in the heat exposure treatment 
variable. The magnitude of that error is, however, likely quite small. Data from the 
2005–2012 American Community Survey show that, among 16–17-year-old high 
school students, only 2.8 percent lived in a different Public Use Microdata Area in 
the year prior, and fewer than 1 percent lived in a state not contiguous with their 
current one. Very few high school students substantially change temperature zones 
in the course of a year.

Daily temperature data come from the National Oceanic and Atmospheric 
Administration’s Daily Global Historical Climatology Network, which includes 
station-level data for thousands of weather stations across the United States. We 
focus on the subset of nearly 3,000 weather stations with daily temperature data 
available for at least 95 percent of the days from 1996 to 2014, the time period cov-
ering the potential test-taking dates of our sample. Doing so allows us to assign each 
high school to a single, stable weather station over the entire time period, which 
avoids endogeneity concerns driven by the possibility that stations coming online 
or going offline are somehow correlated with local population growth, economic 
conditions, or temperature conditions in ways that might contaminate our estimates 
(Auffhammer and Mansur 2014). We impute the small proportion of missing daily 
observations with those from the nearest stations with nonmissing data. We assign 

6 We use the PSAT rather than the SAT for two reasons. First, the SAT is offered at seven different times of 
the year, making it harder to assign easily comparable measures of long-term heat exposure to a given exam take. 
Second, the PSAT is taken by roughly twice as many students as the SAT because the latter is taken in later grades 
by a more college-oriented and thus selected set of takers.
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each high school to the nearest weather station, resulting in an average distance of 
9.7 miles between a student’s test site and the weather station being used to measure 
temperature at that site.

We construct two primary measures of cumulative heat exposure experienced 
by a student: the average daily maximum temperature and the number of days that 
temperature exceeded a given multiple of 10​°​F in the 365 days prior to the test.7 We 
use daily maximum temperature because schooling occurs during the daytime when 
such temperatures usually occur.8 We focus particularly on temperature experienced 
on school days, treating summer and weekend temperatures as separate sources of 
variation.9 We also use the weather stations to construct test date temperature, rain, 
and snowfall, as well as cumulative rain and snowfall exposure over the year prior 
to the test. This helps account for potential independent effects of such precipitation 
(Goodman 2014).

School-level air conditioning data do not exist at the national level and very rarely 
exist at the state and local level. We generate measures of school-level air condition-
ing penetration through a survey the College Board regularly administers by email 
to all SAT takers and to high school guidance counselors registered to administer 
PSAT or other exams. In 2016, we added to the survey the statement “On hot days, 
classrooms get too hot.” Respondents could choose “Never,” “Some of the time,” 
“Most of the time,” or “All the time.”10 We received valid responses from students 
in nearly 12,000 schools enrolling 87 percent of our sample’s PSAT-takers. To con-
struct school-level measures from individual responses, we assign the four possible 
responses a value of 0, ​1/3​, ​2/3​, and 1, then average across all students within 
a school. We interpret this measure as the fraction of a school’s classrooms with 
adequately functioning or sufficiently frequently activated air conditioning. This 
measure of school air conditioning penetration has the advantage of being reported 
by the students themselves and of being based on the largest set of responses to our 
questions about air conditioning. It has the disadvantage of measuring air condi-
tioning penetration at a single point in time and thus may correlate with other unob-
served school-level factors.

A different measure of school air conditioning penetration comes from our addi-
tion to the survey of two questions posed to high school guidance counselors: “How 
many of your school’s classrooms have air conditioning?” and “Ten years ago, how 
many of your school’s classrooms had air conditioning?” Guidance counselors could 

7 Focusing on the prior year implies that the measured heat exposure occurred prior to a given PSAT adminis-
tration but after the most recent one before that. Because of slight annual variation in the timing of the PSAT, we 
exclude the third week of October from these measures to guarantee no overlap between PSAT administrations 
and the constructed measure of heat exposure. The year prior to the test take thus runs from late October of the 
preceding year to mid-October of the current year.

8 We note that it is possible for nighttime heat to affect learning through disrupted sleep as well. To the extent 
that daytime high and nighttime low temperatures are correlated, it is possible that our estimates may include some 
impacts due to disrupted sleep, though the results on weekend days versus weekdays is suggestive of effects driven 
primarily by instructional time, as we discuss below.

9 No comprehensive national dataset of school calendars covering this time period exists, so we assign to each 
student a likely school start and end date based on the calendar of the largest school district in that student’s state, 
as seen in Figure A1 in the online Appendix. We then divide the year into three periods: school days, the summer, 
and weekends or national holidays.

10 Respondents were also allowed to choose “I don’t know.” We coded such answers as missing.
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respond with “None,” “Fewer than half,” “About half,” “More than half,” and “All.” 
To construct school-level measures, we assign these possible responses a value of 
0, ​1/4​, ​1/2​, ​3/4​, and 1, then average across all guidance counselors within a school. 
This measure has the disadvantage that we received responses from guidance coun-
selors in only about 2,000 high schools. It has the advantage, however, of directly 
asking about air conditioning and of allowing us to measure air conditioning pen-
etration at two points in time instead of one. Variation in air conditioning penetra-
tion over time is more plausibly exogenous than cross-sectional measures, helping 
us construct stronger causal claims about the impact of school air conditioning in 
offsetting heat’s impacts. Air conditioning upgrades may nonetheless be correlated 
with other school improvements that protect against high temperatures.

Finally, we supplement our three primary data sources with additional data on 
residential air conditioning, local economic conditions, and pollution levels. We 
construct county-by-year data on residential air conditioning penetration by com-
bining county-level residential air conditioning penetration estimates from the 1980 
decennial census with data on changes in such penetration over time, by census 
region, from the Energy Information Agencies Residential Energy Consumption 
surveys.11 We estimate county-level economic conditions by constructing the log-
arithm of annual payroll per capita from the US Census Bureau’s County Business 
Patterns, focusing on sectors that the National Institute of Occupational Safety and 
Health categorizes as being highly exposed to weather (namely: construction, min-
ing, transportation, manufacturing, agriculture, and utilities). Based on evidence 
of the adverse impact of hot days on highly exposed sector payroll, we use this 
measure to control for local economic shocks driven by annual fluctuations in heat 
(Deryugina and Hsiang 2014, Behrer and Park 2017). Similarly to our temperature 
measures, we construct both cumulative and test date measures of exposure to major 
air pollutants (ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide, and PM10 
particulate matter) using data from the Environmental Protection Agency’s Ambient 
Air Monitoring network. Previous research suggests that such pollutants can affect 
student absenteeism and performance, at least in the short run (Currie et al. 2009; 
Ebenstein, Lavy, and Roth 2016), though there is relatively less evidence regarding 
the impact of longer-term exposures.

B. Summary Statistics

As shown in Table 1, the starting sample comprises over 38 million test scores 
from 27 million students in high school classes from 2001 to 2014 who took the 
PSAT as early as October of 1998 and as late as October of 2012.12 Because our 
primary identification strategy relies on within-student variation in heat exposure 

11 We use the reported penetration rates in 1980 as a basis and then extrapolate based on the region-level growth 
rate of total air conditioning penetration recorded by RECS, which provide penetration rates by region from 1980 
to 2009 with a two or three-year frequency. We linearly interpolate growth rates for the missing years and assign 
counties their corresponding regional growth rate. Using this growth rate and the observed penetration rate in 1980, 
we create a measure of penetration in every county in each year from 1980 to 2011. We top-code penetration at 
100 percent.

12 We exclude a very small number of observations of PSATs taken during October of twelfth grade.
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for identification, we focus on the subset of 21 million scores from the nearly 10 
million students who took the PSAT at least twice.13 Those who took the test again 
are slightly more advantaged than the general pool of PSAT takers, living in higher 
income zip codes, more likely to have mothers with college degrees, and with first 
PSAT scores 0.14 standard deviations about the national average. Importantly, 
retakers seem geographically similar to the general pool of SAT takers. Both groups 
experience school days with mean temperature in the mid 60s ​°​F in the year prior to 
the test, with an average of 12 school days above 90​°​F. Maps of takers’ and retak-
ers’ locations also suggest that both groups have similar geographic distributions in 
line with the population distribution across the United States.14 On average, PSAT 
takers and retakers report that nearly 60 percent of their classrooms are adequately 
air-conditioned, with closer to 80 percent likely to have air conditioning at home. 
Dividing the retaking sample by race and by income reveals that black and Hispanic 
students and low-income students score lower on the PSAT than their white and 
higher-income counterparts.

The raw data suggest a strong negative relationship between cumulative heat 
exposure and academic achievement. Figure 2 maps average PSAT performance 

13 In our sample, 85 percent of students take the PSAT twice, and 15 percent take it three times, the maximum 
given testing opportunities in ninth, tenth, and eleventh grades.

14 See Figure A2 in the online Appendix.

Table 1—Summary Statistics

PSAT retakers

All All Black or Lower Higher
takers retakers Hispanic White income income
(1) (2) (3) (4) (5) (6)

Panel A. Demographics
Female 0.53 0.55 0.56 0.54 0.56 0.53
White 0.58 0.58 0.00 1.00 0.45 0.69
Black or Hispanic 0.29 0.28 1.00 0.00 0.43 0.16
Mother has BA 0.22 0.33 0.18 0.40 0.20 0.44
ZIP code mean income 63.2 69.6 49.4 78.3 38.9 95.6

Panel B. PSAT scores
Retook PSAT 0.36 1.00 1.00 1.00 1.00 1.00
Total takes 1.42 2.15 2.17 2.14 2.14 2.15
First PSAT z-score −0.00 0.14 −0.49 0.40 −0.15 0.40

Panel C. Temperature
Mean temperature (​°​F) 65.1 65.8 68.8 64.2 65.9 65.6
Days above 90 ​°​F 11.9 12.2 15.7 10.6 12.7 11.7

Panel D. Air conditioning
Classrooms with AC 0.58 0.59 0.60 0.58 0.58 0.60
Homes with AC 0.77 0.80 0.85 0.79 0.77 0.82
Observations (scores) 38,303,474 21,076,009 6,023,145 12,161,058 9,570,444 11,322,404
Observations (students) 27,023,119   9,795,654 2,775,607   5,689,371 4,462,169   5,259,910

Notes: Mean values of key variables are shown. Column 1 includes all students from the high school classes of 
2001–2014 who took the PSAT at least once. Column 2 includes only those who took the PSAT more than once. 
Columns 3–6 include subgroups of retakers, with columns 5 and 6, respectively, including below and above median 
zip code-level income within below and above median temperature areas.
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by county. On average, Southern counties have substantially lower test scores than 
do Northern counties. This tracks closely with differences in heat exposure by 
geography, as seen in Figure 3. In Florida and southern Texas, the average school 
day experienced by a student is above 80​°​F, compared to an average school day 
temperature in the 50s​​ in much of the Northern United States. Southern students in 
many counties experience 30 or more school days above 90​°​F, compared to fewer 
than 5 such days in nearly all northern counties. The existence of such a strong 
North-South temperature gradient and test score gradient could be causal or could 
be driven by other important regional differences. Our goal is to disentangle the 
impact of heat from such other factors.

C. Empirical Approach

We exploit the fact that for students who take the PSAT multiple times, differ-
ences across takes in prior year heat exposure are likely uncorrelated with differ-
ences in other factors that might affect academic achievement. We thus ask whether 
students score lower immediately following a hotter year relative to their own score 
immediately following a cooler school year, and, if so, we argue that heat is the only 
factor that can explain such a difference in outcomes. We implement this identifica-
tion strategy with student fixed effects regressions of the following form:

(1)	 ​Scor​e​iscyn​​  =  βHea​t​sy​​ + ​η​i​​ + ​γ​cyn​​ + ​ϵ​iscyn​​​.

Here, ​Score​ denotes the standardized PSAT math and reading score for stu-
dent ​i​ in high school ​s​, high school class ​c​, taking the test in October of year ​y​ for 

[−2.0,−0.3)
[−0.3,−0.2)
[−0.2,−0.1)
[−0.1,0.0)
[0.0,0.1)
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[0.3,0.4)
[0.4,0.5)

Figure 2. Spatial Distribution of PSAT z-Scores

Note: The above figure shows county-level average standardized PSAT scores from the high school classes of 
2001–2014.
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the ​n​th time. Inclusion of student fixed effects ​η​ implies that identification comes from 
within-student comparisons of heat exposure and test score differences over multiple 
takes.15 We define cumulative heat exposure, ​Heat​, as the average maximum tem-
perature experienced during school days in the year prior to the test for all students 
in high school ​s​ taking the test in year ​y​. In that case, the coefficient of interest ​β​ can 
be interpreted as the standard deviation impact on a student’s test score of experi-
encing a 1​°​F hotter school year on average. High school class by test year by take 
number fixed effects ​γ​ flexibly control for a variety of potential confounds, including 

15 We use student fixed effects rather than high school fixed effects because the latter approach depends on the 
assumption that selection into PSAT-taking at the school level does not vary over time in ways correlated with heat 
exposure. This assumption fails empirically because, over the time period in question, PSAT taking expands to a 
wider set of students and moreso in regions of the country that are differentially affected by longer-term warming 
trends. The student fixed effects approach avoids this selection margin entirely.

45–50
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70–74
75–79
80+

Panel A. Mean temperature (°F)

0–1
1–2
2–3
3–5
5–10
10–20
20–30
30+

Panel B. Days above 90°F

Figure 3. Spatial Variation in Prior Year Temperature

Notes: This figure shows the mean daily maximum temperature (panel A) and number of days above 90°F (panel 
B) experienced by students on school days in the 365 days prior to taking the PSAT, by county. The sample consists 
of all PSAT-takers from high school classes during the period of 2001–2014, whose PSATs were taken between 
1997 and 2012.
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differential selection into test-taking across high school classes, differential diffi-
culty of the test across test dates, and differential test performance based on past 
number of test takes. We cluster standard errors by weather station, the level of 
variation in our treatment variable.

We also use a specification that replaces this single heat exposure measure with a 
vector of counts of the number of school days falling into various temperature bins:

(2)	 ​Scor​e​iscyn​​  = ​ β​1​​ DaysAbove​100​sy​​ + ​β​2​​ DaysIn90​s​sy​​ + ​β​3​​ DaysIn80​s​sy​​ 

	 + ​β​4​​ DaysIn70​s​sy​​ +  ​β​5​​ DaysBelow ​60​sy​​ + ​η​i​​ + ​γ​cyn​​ + ​ϵ​iscyn​​​.

In this specification, the coefficient on days in the 90s can be interpreted as the 
impact of experiencing one more very hot school day, relative to a school day with  
a temperature in the 60s. This specification allows us to study nonlinearities in the 
effect of school year temperature.16 Identification therefore relies on both spatial 
variation in heat exposure, as previously shown in Figure 3, as well as temporal 
variation in heat exposure.17 To understand the magnitude of such identifying varia-
tion, we compute the residual from regressing heat exposure on the aforementioned 
student and class-year-take fixed effects. The distribution of such residuals suggests 
that a one standard deviation increase in mean school day temperature is about 1​°​F, 
while a one standard deviation increase in the number of schools day above 90​°​F is 
about three days.

One potential threat to identification comes from the possibility that cumulative 
heat exposure drives selection into taking the PSAT for the first time or choosing 
to retake it. To test for selection into taking the PSAT the first time, we collapse the 
data by high school and regress the number of first-time test-takers (as well as its 
logarithm) on high school fixed effects and cohort by test date fixed effects. We see 
no evidence that within-school fluctuations in annual heat exposure affect the num-
ber of test takers and can rule out economically meaningful effect sizes. We then run 
similar student-level regressions using the demographic characteristics of first-time 
test-takers as outcomes. The results rule out meaningful impacts of heat exposure 
on the observable composition of the test-taking population, particularly when con-
trolling for differential heat trends by state.18 Finally, we ask whether heat in the 
year prior to the first take or in the year following the first take affects the proba-
bility that a student retakes the PSAT. We again find no evidence of such selection, 
with point estimates suggesting a 1​°​F hotter school year increases the probability 
of retaking by 0.05 percentage points and confidence intervals that rule out effects 
larger than 0.15 percentage points.19 In total, these results suggest little evidence 
of endogenous selection into test-taking or retaking as a result of cumulative heat 
exposure.

16 We do not find strong evidence that cold weather affects learning in our sample, hence our focus on the upper 
end of the temperature distribution.

17 See Figure A3 in the online Appendix for annual variation in average school day temperatures.
18 See Table A1 in the online Appendix for detailed estimates.
19 See Table A2 in the online Appendix for detailed estimates.
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II.  The Impact of Cumulative Heat Exposure

A. Prior Year Impacts

On average in the United States, experiencing a 1​°​F hotter school year lowers aca-
demic achievement by 0.002 standard deviations, a result that is very precisely esti-
mated and robust to a variety of controls for potential confounding factors. Table 2 
shows these results. The first column of panel A contains the baseline specification 
described in equation (3), where the test score outcome is measured in hundredths 
of a standard deviation. The coefficient is highly statistically significant and precise 
enough to rule out effects smaller than 0.001 standard deviations. The magnitude 
of these impacts is small enough to have been missed by previous studies with less 
precision but large enough to imply nontrivial cumulative effects of temperature 
on learning. For example, the average gain in PSAT score performance between 
tenth and eleventh grade is about 0.3 standard deviations, implying that a 1​°​F hotter 
school year reduces learning by close to 1 percent of the expected gains over that 
year. As we will see below, learning impacts are even larger for certain demographic 
subgroups and in the absence of air conditioning.

That students score lower following hotter years relative to their own scores fol-
lowing cooler years does not appear to be driven by other channels potentially cor-
related with heat in the school year leading up to the exam, as seen in the next four 
columns of Table 2. Controlling for total snowfall and rainfall in the prior year and 
for temperature and precipitation on the day of the exam has nearly no effect on the 
point estimate. This suggests that we are not mistakenly attributing to cumulative 
heat exposure effects that are actually driven by cumulative precipitation exposure 
or by contemporaneous heat exposure. Similarly, controlling for both cumulative 
and contemporaneous pollution exposure leaves our estimate nearly unchanged, 
implying that we are measuring the direct impact of heat and not of pollutants, such 
as ozone, that may be more common on hot days.

Controlling for county-level payroll in industries highly exposed to weather 
conditions also does little to our point estimate, suggesting that cumulative heat 
exposure is not operating through the channel of family income or local economic 
conditions.20 The robustness of our estimate to controls for state-specific time trends 
suggests we are not picking up spurious correlations driven by subtle geographic 
differences in warming trends that may be correlated with other local changes in 
selection into or preparation for PSAT-taking or retaking.21 Regardless of which 
of the aforementioned controls are included, the estimated impact of a 1​°​F hotter 
school year, which represents a roughly one standard deviation change in cumula-
tive heat exposure, is never substantially different from 0.002 standard deviations.

Given that the mean distance between weather stations and high schools in our 
data is just under 10 miles, the cumulative heat exposure we assign to each student 

20 This is perhaps unsurprising given the developed country context, but contrasts with research in developing 
countries that shows agricultural yield shocks driving schooling outcomes (Garg, Jagnani, and Taraz 2016; Shah 
and Steinberg 2017).

21 The estimates are also robust to using quadratic or cubic trends instead of linear trends.
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may be mismeasured, particularly for students farthest away from weather stations. 
The final column of Table 2 limits the sample to high schools within five miles of a 
weather station, for which we assume that measurement error is less of an issue. For 
students whose high schools are particularly close to weather stations, the impact of 
cumulative heat exposure on academic achievement is about 25 percent larger than 
for the sample as a whole. Interacting heat effects with distance from the nearest 
sensor also suggests that students farther from sensors see less measured impact 
from heat, with the model predicting that those in the immediate vicinity of a sensor 
would experience impacts similar to the estimate in that final column of Table 2.22 
This is consistent with the possibility that measurement error in our treatment vari-
able is generating downward bias in our estimates, though it is also consistent with 
the possibility of heterogeneous treatment effects correlated with factors that make 
weather stations more likely to be online near schools.

22 See column 1 of Table A3 in the online Appendix.

Table 2—Prior Year Temperature and PSAT Scores

(1) (2) (3) (4) (5) (6)

Panel A. Average heat
Mean temperature (°F) −0.181 −0.211 −0.185 −0.182 −0.176 −0.230

(0.028) (0.036) (0.029) (0.028) (0.027) (0.042)

Panel B. Hot days
Days above 100°F −0.067 −0.077 −0.075 −0.065 −0.064 −0.098

(0.018) (0.020) (0.017) (0.018) (0.016) (0.033)
Days in 90s (°F) −0.053 −0.061 −0.059 −0.053 −0.053 −0.064

(0.013) (0.014) (0.013) (0.013) (0.012) (0.018)
Days in 80s (°F) −0.035 −0.037 −0.039 −0.035 −0.029 −0.046

(0.009) (0.010) (0.009) (0.009) (0.009) (0.013)
Days in 70s (°F) −0.024 −0.024 −0.026 −0.024 −0.023 −0.020

(0.008) (0.008) (0.008) (0.008) (0.008) (0.012)
Days below 60°F 0.010 0.013 0.008 0.010 0.010 0.007

(0.009) (0.009) (0.008) (0.009) (0.007) (0.011)

Observations 21,046,448 21,046,448 21,046,448 21,046,448 21,046,448 5,378,273

Prior year snow, rain No Yes No No No No
Test day weather No Yes No No No No
Pollution No No Yes No No No
Economic conditions No No No Yes No No
State-specific trends No No No No Yes No
Sensor within 5 miles No No No No No Yes

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses. Coefficients in each 
column and panel come from a regression of hundredths of a standard deviation in PSAT total (math plus read-
ing) scores on the weather measure(s) shown. Temperature is measured with the daily maximum temperature from 
school days in the 365 days preceding the PSAT take. All regressions include student fixed effects and fixed effects 
for each combination of cohort, test date, and take number. Column 2 adds controls for prior year rainfall and snow-
fall, as well as test day temperature, rainfall, and snowfall. Column 3 controls for prior year and test day pollution 
levels (carbon monoxide, ozone, suflur dioxide, nitrogen dioxide, and PM10). Column 4 controls for the logarithm 
of per capita county-level payroll in industries highly exposed to weather. Column 5 adds state-specific linear time 
trends. Column 6 limits the sample to high schools within 5 miles of the nearest weather sensor. The sample com-
prises all students from the high school classes of 2001–2014 who took the PSAT more than once.
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In addition to estimating the impact of generally hotter school years, we also 
show that very hot days are particularly damaging to student achievement. Panel B 
of Table 2 shows the specification in which we measure cumulative heat exposure by 
counts of school days falling into various temperature bins. Replacing a school day 
in the 60s with a hotter school day lowers achievement, with the extent of that dam-
age increasing roughly linearly with temperatures above 70​°​F. Consistent with our 
baseline specification, these estimated magnitudes also imply that a one standard 
deviation increase in heat exposure, or over three additional days above 90​°​F, lowers 
achievement by 0.002 standard deviations. Cold days, those below 60​°​F, appear to 
have little impact on achievement. Figure 4 shows these point estimates with further 
disaggregation of colder school days and, consistent with laboratory studies on cog-
nition and recent studies on labor supply and mortality, shows damage that increases 
with temperature starting around 70​°​F. Estimated impact of hot days is, like that for 
mean heat, robust to controls for cumulative precipitation and pollution, test day 
weather and pollution, local economic conditions, and state-specific trends.

Heat’s cumulative impact on academic achievement is not driven by one partic-
ular subject, in contrast to findings focusing on short-run cognitive impacts (Graff 
Zivin, Hsiang, and Neidell 2018; Garg, Jagnani, and Taraz 2016). Both math and 
reading scores drop by similar magnitudes for a given level of additional heat expo-
sure.23 The effect is also not driven by one particular test take. Heat prior to a first 
test take has relatively similar negative effects on achievement to heat prior to a 
second take, although there is some evidence that heat’s learning impact, if any-
thing, increases with take number.24 This eliminates the possibility that our results 
are driven by differential selection into retaking based on correlations between heat 
exposure, first take performance, and students’ beliefs about whether their first 
scores reflect their true abilities. It also makes it unlikely that our results could be 
driven by subtle warming trends over time. Using future temperature shocks as a 
placebo test also yields results consistent with our interpretation of these impacts 
as causal. Controlling for mean school day temperatures in the one, two, and three 
years after the exam does little to change our estimated impact of cumulative heat 
exposure, and the coefficients on future temperature are much closer to zero than 
our main effect and never statistically significant.25 This makes it less likely that our 
results are a statistical artifact driven by spurious correlations between temperature 
and test scores.

The statistical significance of our estimates is not particularly sensitive to how we 
account for potential spatial correlation in temperature shocks. Our default specifica-
tion clusters standard errors by weather sensor, following the suggestion by Abadie 
et al. (2017) to cluster at the level of treatment variation. Given potential spatial cor-
relation between heat shocks across distinct but nearby weather sensors, we cluster 
by state to allow for correlations within much broader geographic areas. This very 
conservative approach increases our standard errors by, at most, 30 to 50 percent, so 
our central estimates of the impact of average heat or days above 90​°​F remain highly 

23 See Table A4 in the online Appendix for details.
24 See Table A5 in the online Appendix for details.
25 See Table A6 in the online Appendix for details.
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statistically significant.26 Following Conley (1999), nonparametrically adjusting 
our standard errors to account for spatial correlation does not inflate our standard 
errors significantly, again leaving our main inferences unchanged.

B. Productivity of Instructional Time

One indication that cumulative heat exposure affects achievement by directly 
lowering the productivity of instructional time comes from examining the impact 
of heat on three mutually exclusive sets of days in the year prior to the test: school 
days, weekends and national holidays during the school year, and summer days. The 
first two columns of Table 3 contrast our baseline specification with one in which we 
control for heat on summer days. Two important facts emerge. First, controlling for 
summer heat has little effect on our estimated impacts of school day heat. Second, 
the impact of summer heat on academic achievement is very small and statistically 
indistinguishable from zero. That summer heat has no impact on academic achieve-
ment seems to rule out potential channels such as student health or local economic 
conditions given that such channels should be affected by summer heat as well as 
school day heat.

26 See Table A7 in the online Appendix.
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Figure 4. Cumulative Hot Days and Test Performance

Notes: Shown above are coefficients from a regression of hundredths of a standard deviation in PSAT total (math 
plus reading) scores on the number of school days within a given temperature range during the 365 days preceding 
the PSAT take. The regression includes student fixed effects and fixed effects for each combination of cohort, test 
date, and take number. Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses. 
The sample comprises all students from the high school classes of 2001–2014 who took the PSAT more than once.
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Controlling for school year weekend and holiday heat somewhat increases the 
estimated effects of school day heat. We see no evidence that weekend and holiday 
heat lowers student achievement. This is again consistent with the possibility that 
time in school is critical to understanding the relationship between heat exposure 
and human capital accumulation. One challenge in interpreting the coefficients in 
column 3 of Table 3 is that residual variation in weekend heat is highly collinear 
with variation in school day heat. Summer heat variation, by contrast, is substan-
tially less collinear with school day heat variation. The large, positive coefficients on 
weekend heat could represent a real impact of substitution away from leisure time 
and toward study time. They may also simply be an artifact of that high degree of 
collinearity. Regardless, controlling for weekend heat does not affect the conclusion 
that school day heat affects academic achievement.

One further test yields results consistent with our interpretation that heat expo-
sure interferes with actual learning. In column 4 of Table 3, we break heat exposure 
into three time periods corresponding to distance in time to the test: post-summer 
school days (the roughly 2 months just prior to the PSAT), summer days (roughly 

Table 3—Timing of Temperature Shocks

(1) (2) (3) (4)

Panel A. Mean temperature (°F)
School days, 1 year prior −0.181 −0.205 −0.270

(0.028) (0.030) (0.043)
Summer days, 1 year prior 0.039 0.047

(0.026) (0.026)
Weekend days, 1 year prior 0.114

(0.038)
School days, post-summer −0.061

(0.025)
School days, pre-summer −0.160

(0.029)

Panel B. Days above 90°F
School days, 1 year prior −0.056 −0.061 −0.073

(0.012) (0.011) (0.016)
Summer days, 1 year prior 0.016 0.018

(0.011) (0.011)
Weekend days, 1 year prior 0.043

(0.028)
School days, post-summer −0.074

(0.019)
School days, pre-summer −0.074

(0.016)

Observations 21,046,448 21,046,448 21,046,448 21,046,448

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses. Coefficients in each 
column and panel come from a regression of hundredths of a standard deviation in PSAT total (math plus reading) 
scores on the weather measure(s) shown. School day temperature is measured with the daily maximum temperature 
from school days in the listed 365 day period relative to the PSAT take. Summer temperature is measured across 
all days in the summer break prior to taking the PSAT. Weekend temperature is measured across all weekends and 
national holidays in the 365 days prior to taking the PSAT. All regressions include student fixed effects and fixed 
effects for each combination of cohort, test date, and take number. The sample comprises all students from the high 
school classes of 2001–2014 who took the PSAT more than once.
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3 to 5 months prior to the PSAT), and pre-summer days (roughly 6 to 12 months 
prior to the PSAT). Summer heat again has little clear impact on achievement, while 
both pre- and post-summer heat have large negative impacts. That the damage from 
pre-summer heat is as large as or larger than the impact of post-summer heat sug-
gests that heat operates not just through periods in which students might be “cram-
ming” for a test. Instead, heat appears to affect cumulative learning over a longer 
time frame.

C. Persistent and Cumulative Impacts

To provide evidence about the impact of heat exposure further back in time than 
the prior school year, we augment our regression specifications 3 and 2 with tem-
perature measures from school days in the years starting two, three, four, and five 
years prior to each exam take. Equation (3) becomes

(3)  ​Scor​e​iscyn​​  = ​ β​1​​ Heat1YearAg​o​sy​​ + ​β​2​​ Heat2YearsAg​o​sy​​ + ​β​3​​ Heat3YearsAg​o​sy​​

	 +  ​β​4​​ Heat4YearsAg​o​sy​​ + ​β​5​​ Heat5YearsAg​o​sy​​ + ​η​i​​ + ​γ​cyn​​ + ​ϵ​iscyn​​​.

This accomplishes two things. First, our estimates of prior year heat exposure from 
equations (3) and (2) are downward biased if such effects persist beyond one year, 
and controlling for further lagged measures of temperature should help eliminate 
that downward bias. Failing to control for dynamic effects can cause our student 
fixed effects approach to understate the impact of heat because that approach implic-
itly assumes complete decay of effects after one year, so that heat before the first 
take affects only the first take and not the second take itself. Second, the estimated 
impacts of earlier years’ heat exposure allows us to more accurately estimate longer 
run impacts of exposure to different temperature environments. For example, the 
sum of the coefficients ​​β​1​​​ through ​​β​5​​​ estimates the test score impact of a 1° increase 
in the average temperature over a student’s five prior school years.

Table 4 shows these estimates, with coefficients for individual years shown in 
each column and the sum of those coefficients shown at the bottom of each column. 
Two important facts emerge. First, controlling for earlier heat exposure increases 
our estimates of the impact of prior year heat by 20 to 40 percent, suggesting that 
such estimates may have been downward biased by our baseline specification’s 
identifying assumption that prior year heat’s impact fades out entirely after that 
year. Second, we see fairly clear evidence that heat up to four years prior affects test 
scores. This evidence is clearer with respect to the impact of hot days than it is with 
the impact of average temperature, but it is present in the point estimates of both. 
We see no evidence that heat five years prior impacts test scores, and tests of further 
lags (not shown here) also show no clear impact. These estimates suggest that heat 
effects are somewhat more persistent than teacher effects, which the literature esti-
mates fade out substantially within one to two years (Kane and Staiger 2008; Jacob, 
Lefgren, and Sims 2010; Rothstein 2010).

We take the cumulative impact over the past four years as our favored estimate 
of cumulative impacts for two reasons. First, because five year and further lags have 



VOL. 12 NO. 2� 325PARK ET AL.: HEAT AND LEARNING

little apparent impact on test scores, cumulative impacts tend to level off after four 
years. Second, we are estimating lagged heat exposure based on the high school a 
student is enrolled in at the time of taking the PSAT. Because we do not know where 
a student attended primary school, going back much further in time likely increases 
the measurement error of our treatment variable. We therefore take the four-year 
cumulative impact as a lower bound on the total impact, but one that our best esti-
mates suggest is likely not far from the truth. The cumulative impact of increased 
heat exposure over multiple years is thus three to five times larger than the impact 
of just the prior year’s heat. Our estimates suggest that a 1​°​F increase in the average 
temperature of the past four school years leads to about a 0.006 standard deviation 
decrease in test scores, or 2 percent of the typical increase in PSAT scores over a 
single school year. Experiencing one additional day above 90​°​F in each of those 

Table 4—Lagged and Cumulative Impacts of Heat Exposure

(1) (2) (3) (4) (5)

Panel A. Mean temperature (°F)
1 year prior −0.181 −0.189 −0.185 −0.213 −0.215

(0.028) (0.036) (0.041) (0.044) (0.048)
2 years prior −0.017 −0.010 −0.096 −0.099

(0.036) (0.052) (0.061) (0.071)
3 years prior 0.012 −0.088 −0.093

(0.043) (0.057) (0.080)
4 years prior −0.168 −0.173

(0.049) (0.076)
5 years prior −0.009

(0.058)
Cumulative impact −0.181 −0.206 −0.182 −0.565 −0.589

(0.028) (0.066) (0.121) (0.178) (0.296)

Panel B. Days above 90°F
1 year prior −0.056 −0.066 −0.078 −0.083 −0.080

(0.012) (0.013) (0.014) (0.015) (0.016)
2 years prior −0.031 −0.051 −0.069 −0.061

(0.010) (0.013) (0.018) (0.021)
3 years prior −0.048 −0.072 −0.054

(0.014) (0.021) (0.028)
4 years prior −0.043 −0.024

(0.017) (0.025)
5 years prior 0.031

(0.019)
Cumulative impact −0.056 −0.097 −0.178 −0.268 −0.188

(0.012) (0.021) (0.034) (0.060) (0.096)

Observations 21,046,448 21,046,448 21,046,448 21,046,448 21,046,448

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses. Each coefficient 
comes from a separate regression of hundredths of a standard deviation in PSAT total (math plus reading) scores 
on the weather measure(s) shown. Panel A measures mean temperature using the daily maximum temperature from 
school days in the 365 day period starting the given number of years prior to taking the PSAT. Panel B measures 
the number of such school days above 90°F and controls for the number of days in other temperature ranges, so that 
days in the 60s are the reference category. Beneath each column is the cumulative impact of heat exposure, gener-
ated by adding the listed coefficients. All regressions include student fixed effects and fixed effects for each com-
bination of cohort, test date, and take number. The sample comprises all students from the high school classes of 
2001–2014 who took the PSAT more than once.
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four years would reduce scores by between 0.002 and 0.003 standard deviations, or 
1 percent of a typical school year’s PSAT increase.

III.  School Air Conditioning as a Defensive Investment

A. Descriptive Analysis

Adaptive responses and defensive investments are important for understanding 
the welfare implications of environmental shocks, particularly in the long run (Graff 
Zivin and Neidell 2013; Kahn 2016; Deschênes, Greenstone, and Shapiro 2017). 
School air conditioning represents one potential investment.27 To explore its role in 
mitigating the effects of heat exposure, we first provide descriptive analysis of the 
prevalence of school air conditioning across the United States.

Figure 5 shows county-level averages of school air conditioning penetration 
as measured by the extent to which students (panel A) and guidance counselors 
(panel B) report that “On hot days, classrooms get too hot.” The resulting map 
is roughly the inverse of an average temperature map. Students and counselors 
are much less likely to report hot classrooms in the hotter regions of the country 
and much more likely to report hot classrooms in cooler regions. Students in the 
Northeast, for example, report that heat interferes with learning on the majority of 
hot days. Students in the South report heat interfering with learning on only about 
one-fourth of hot days.

Because this reporting may partly reflect the extent to which students and coun-
selors are accustomed to heat rather than actual air conditioning status, we ask 
guidance counselors directly about the fraction of classrooms with air conditioning. 
That map, in panel A of Figure 6, looks quite similar to the map of hot classrooms. 
According to guidance counselors, nearly all classrooms in the South have air condi-
tioning, while the majority of classrooms in the Northeast lack it. We therefore inter-
pret student reports of hot classrooms as a measure of air conditioning penetration. 
That our student-generated measure based on hot classrooms has a nearly 0.7 cor-
relation with the counselor-generated responses to the direct question about air con-
ditioning suggests the former is largely measuring actual school air conditioning.28

These various measures are the first we know of to provide national school-level 
estimates of air conditioning status. We also note, as seen in panel B of Figure 6, that 
both home and school air conditioning seem to vary substantially by region, with 
lower penetration rates particularly in more mountainous regions of the country.

27 Teachers and parents seem to value school air conditioning judging by recent labor disputes and commu-
nity petitions. During a major teacher strike in Chicago in 2012, “Timetable for air conditioning” was one of 
four major contract demands, with an agreement to provide universal air conditioning eventually reached in 2016. 
Parents and teachers in a number of major school districts, such as New York City, Los Angeles, and Denver, 
have recently signed petitions asking districts to upgrade air conditioning equipment. See: http://www.denverpost.
com/2011/09/08/heat-related-illnesses-spur-petition-for-sept-school-start-in-denver/.

28 See Figure A5 in the online Appendix, which shows a tight relationship between counselor reports of air-con-
ditioned classrooms and student reports of classrooms too hot for learning.

http://www.denverpost.com/2011/09/08/�heat-related-illnesses-spur-petition-for-sept-school-start-in-denver/
http://www.denverpost.com/2011/09/08/�heat-related-illnesses-spur-petition-for-sept-school-start-in-denver/
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B. School Air Conditioning as Potential Mitigator

We use two approaches to assess whether school air conditioning can offset heat’s 
adverse impact on learning. First, we interact the cross-sectional measure of air con-
ditioning penetration reported by students with our heat exposure measure and add 
it to our baseline specification. This regression has the form:

(4)	 ​Scor​e​iscyn​​  =  αHea​t​sy​​ + βHea​t​sy​​ × SchoolA​C​s​​ + ​η​i​​ + ​γ​cyn​​ + ​ϵ​iscyn​​​.

The coefficient ​α​ now has the interpretation of the impact of heat on a school with 
no air conditioning, while ​β​ represents the predicted difference between that impact 
and the impact on a fully air-conditioned school.

Figure 5. Hot Classrooms

Notes: This figure shows, by county, the mean fraction of classrooms reported as “too hot” on hot days by students 
(panel A) and guidance counselors (panel B). Both measures are derived from student or counselor responses to 
a survey administered by the College Board. The sample consists of all PSAT-takers from the high school classes 
from 2001 to 2014, whose PSATs were taken between 1997 and 2012.
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This analysis, if taken as causal, suggests that school air conditioning almost fully 
offsets the impacts of cumulative heat exposure. In column 1 of Table 5, the main 
coefficient implies that, for students in schools with no air conditioning, a 1​°​F hotter 
school year lowers achievement by 0.0032 standard deviations. The interaction coef-
ficient suggests that in fully air-conditioned schools, this effect is 0.0025 standard 
deviations smaller. For the average student, school air conditioning thus appears to 
offset 73 percent of the learning impact of hot school days. This interaction coeffi-
cient may represent the causal impact of school air conditioning, but it may also be 
picking up effects of other factors correlated in the cross-section with a school’s air 
conditioning status.

In particular, school air conditioning may be correlated with other adaptations 
students have made to deal with hot environments or with wealth or other resources 

Figure 6. School and Home Air-Conditioning

Notes: This figure shows, by county, the mean fraction of classrooms (panel A) and homes (panel B) lacking 
air-conditioning. Classroom measures are derived from guidance counselor responses to a survey administered by 
the College Board. Home measures are derived from the 1980 census and the 1993–2015 quadrennial Residential 
Energy Consumption Surveys. The sample consists of all PSAT-takers from the high school classes of 2001–2014, 
whose PSATs were taken between 1997 and 2012.
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available to students that independently improve their achievement. To account for 
the possibility that school air conditioning is proxying for other adaptive measures, 
we add to equation (4) additional terms in which heat exposure is interacted with 
county-level home air conditioning rates and mean school year temperature. To 
account for school air conditioning as a proxy for other academic resources avail-
able to students, we also control for such interactions with zip code-level income, 
the racial composition of a school’s PSAT takers, and per pupil district-level school 
capital expenditures, the last of which helps account for the possibility that schools 
with air conditioning have made other capital investments that boost achievement.29 
The results of this augmented specification are shown in column 2 of Table 5. The 
topmost coefficient now suggests that, for a student with neither school nor home 
air conditioning, a 1​°​F hotter school year lowers achievement by 0.0057 standard 
deviations. School air conditioning and home air conditioning respectively offset 
41 and 57 percent of this effect, implying that a student with access to both would 
see little negative impact of heat exposure. That the magnitude of the school air 
conditioning coefficient does not change substantially with the addition of these 

29 We use sample-demeaned versions of these control variables so that coefficients can be interpreted as impacts 
on students with average school temperatures, income, racial composition, and capital expenditures.

Table 5—Adaptation through School Air Conditioning

(1) (2) (3) (4)

Mean temperature −0.322 −0.569 −0.229 −0.456
(0.067) (0.104) (0.060) (0.169)

Mean temperature × School AC penetration 0.253 0.235
(0.099) (0.070)

Mean temperature × HS class 0.117 0.116
  × School AC penetration change (0.039) (0.038)
Mean temperature × HS class −0.011 0.003

(0.015) (0.016)
Mean temperature × School AC penetration change −0.218 −0.275

(0.168) (0.153)
Mean temperature × Home AC penetration 0.324 0.211

(0.110) (0.185)

Observations 18,665,967 18,665,967 2,935,907 2,935,907

Interactions with ZIP code income, school racial 
composition, typical school temperature, and district 
capital expenditures

No Yes No Yes

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses. Coefficients in each 
column come from a regression of hundredths of a standard deviation in PSAT total (math plus reading) scores on 
the heat measure and interaction shown. Mean temperature is measured by the daily maximum temperature from 
school days in the 365 days preceding the PSAT take. Columns 1 and 2 interact heat with school air conditioning 
penetration rates as reported by students in 2016. Columns 3 and 4 interact heat with high school class, the change 
in school air conditioning penetration rates between 2006 and 2016 as reported by guidance counselors, and the 
interaction of those two variables. Columns 2 and 4 also control for interactions between heat and county-level 
home air conditioning penetration rates, as well as (not shown) sensor-level mean school year temperature, zip 
code-level income, the school-level fraction of PSAT-takers who are black or Hispanic, and the school district’s 
average per pupil capital expenditures from 1996–2000. All regressions include student fixed effects and fixed 
effects for each combination of cohort, test date, and take number. The sample comprises all students from the high 
school classes of 2001–2014 who took the PSAT more than once and whose school air conditioning penetration rate 
(columns 1 and 2) or change in that rate (columns 3 and 4) are nonmissing.
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controls implies that omitted variable bias from such sources is unlikely to explain 
the observed effect.

We make one further attempt to isolate the impact of school air conditioning. To 
do so, we use the change over time in penetration rates implied by differences in 
counselors’ reports about their schools’ air conditioning status in 2016 versus ten 
years before that. We assign to students a variable ​SchoolACchange​, which rep-
resents their high school cohort’s change in air conditioning penetration rate rel-
ative to 2006 implied by the counselors’ answers. Cohorts from 2006 and earlier 
are assigned a value of zero, and more recent cohorts are assigned a change lin-
early interpolated from the counselors’ two responses. We then run the following 
specification:

(5)    ​Scor​e​iscyn​​  =  βHea​t​sy​​ × SchoolACchang​e​sc​​ × HSClas​s​i​​ 

	 + δHea​t​sy​​ × SchoolACchang​e​sc​​ +  μHea​t​sy​​ × HSClas​s​i​​ 

	 + νHea​t​sy​​ + ​η​i​​ + ​γ​cyn​​ + ​ϵ​iscyn​​​.

Here, ​HSClass​ is a continuous measure of a student’s cohort. In effect, the coef-
ficient ​β​ from this triple-difference approach estimates whether schools that have 
installed additional air conditioning over time see the impact of heat shrink across 
cohorts, relative to schools that have not added air conditioning.

The results in column 3 of Table 5 suggest that this is the case. The coefficient 
on the triple interaction term is positive and highly statistically significant, implying 
that later cohorts do see smaller impacts of heat in schools that improved air con-
ditioning penetration relative to schools that did not. This conclusion is unchanged 
when we control for additional interactions with home air conditioning and the other 
controls described previously. This provides additional evidence consistent with the 
possibility that school air conditioning mitigates the impacts of heat exposure. The 
main threat to validity here is that a school’s adoption of air conditioning correlates 
with other unobserved changes over time in that school that might also mitigate the 
impacts of heat (e.g., more tree cover, improved ventilation). Though possible, it 
seems likely that changes in school air conditioning penetration are more exogenous 
than cross-sectional variation in such penetration. That both approaches yield con-
sistent results suggests school air conditioning may mitigate a substantial portion of 
the learning impacts of heat exposure.

To provide a back-of-the-envelope estimate of the monetized value of school air 
conditioning, we apply previous estimates of the relationship between test scores 
and later life earnings from Chetty et al. (2011). That paper finds that having a 
teacher who raises test scores by 0.1 standard deviations results in a net present value 
of $8,500 in future increased earnings for current 16-year-olds.30 Our estimates in 

30 Chetty et al. (2011) compute a $7,000 net present value in increased earnings for the typical 12-year-old stu-
dent in their sample. We apply their 5 percent discount rate to generate the $8,500 figure for the typical 16-year‑old 
student taking the PSAT. An important assumption we make by using these estimates is that the achievement gains 
due to a better teacher result in later life impacts that are equivalent in magnitude to those associated with having a 
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Table 5 suggest that school air conditioning offsets about 0.0025 standard deviations 
in learning damage for each 1​°​F increase in temperature. This translates into a net 
present value of $212 in recovered future earnings per student, per 1​°​F increase in 
temperature during a given school year. In a city like Houston, where the average 
school day is approximately 80​°​F and thus 10​°​F above the point where heat’s impact 
on learning first appears, the present value of school air conditioning is approxi-
mately $2,120 per year for each student, $53,000 per year for each 25 student class-
room, or $2.1 million per year for each 1,000-student high school. Put differently, 
the extent to which school air conditioning would offset the earnings loss driven by 
the 5​°​F increase predicted by climate change models is $1,060 per student, $26,500 
per classroom, or just over $1 million per high school.

Although these are rough estimates, benefit values of this order of magnitude 
imply that school infrastructure may more than justify their costs. Based on avail-
able data, we conservatively estimate the amortized cost of school air conditioning 
to be approximately $125,000 per school per year, or $125 per student per year for 
a 1,000-person school.31 Given variation in the average amount of school year heat, 
we estimate that the cost of improving scores by 1 percent of a standard deviation 
for the average US school is between $25 and $125 per student per year.32 For com-
parison, the average cost associated with the Tennessee STAR experiment—which 
reduced class sizes by roughly one-third at a cost of $3,602 per student per year 
($(1995)2,151) and resulted in test score gains of approximately 0.22 standard devi-
ations (Krueger 1999)—is approximately $163 per 1 percent of a standard deviation 
improvement per student.

IV.  Heat and Achievement Gaps

A. Inequality in School Air Conditioning

We next document racial and income gaps in school air conditioning penetra-
tion rates. To do so, we regress the student-generated measure of school air con-
ditioning penetration on an indicator for being black or Hispanic (relative to being 
white) and separately on an indicator for being in the lower half of the zip code 

climate-controlled learning environment. For instance, if teachers impart valuable noncognitive skills but air condi-
tioning does not, these estimates would be overstated.

31 We note that the average school  air conditioning budget allocations from two recent bond initia-
tives in New York City and Denver public schools were reported as being $100,000 and $886,000 per 
school, respectively. We therefore conservatively assume that these allocations only represent up-front fixed 
costs, and that variable costs associated with operating school air conditioners are an additional 10 per-
cent of fixed costs each year. Conservatively assuming $886,000 in up-front fixed costs, a 5 percent dis-
count rate, and an average lifetime of 20 years, we estimate total amortized costs of $125,000 per school per 
year. (For Denver, see: https://www.chalkbeat.org/posts/co/2016/06/09/how-denver-public-schools-could-
spend-70-million-cooling-its-hottest-schools/. For NYC, see: https://www1.nyc.gov/office-of-the-mayor/
news/261-17/mayor-de-blasio-chancellor-fari-a-city-council-every-classroom-will-have-air.)

32 The benefits of installing school air conditioning will likely be proportional to the average school year heat 
that is offset. In a place like Houston, which experiences approximately 35 school days above 90° F and 48 days 
in the 80s, our estimates (using coefficients from column 1 of Table 2) suggest that air conditioning offsets around 
5.7 percent of a standard deviation in learning losses that would occur due to hot temperature. In a cooler place 
such as New York, which experiences 2 days above 90​°​F and 14 days in the 80s, we estimate the present value of air  
conditioning to be approximately 1 percent of a standard deviation.

https://www.chalkbeat.org/posts/co/2016/06/09/�how-denver-public-schools-could-spend-70-million-cooling-its-hottest-schools/
https://www.chalkbeat.org/posts/co/2016/06/09/�how-denver-public-schools-could-spend-70-million-cooling-its-hottest-schools/
https://www1.nyc.gov/�office-of-the-mayor/news/�261-17/�mayor-de-blasio-chancellor-fari-a-city-council-every-classroom-will-have-air
https://www1.nyc.gov/�office-of-the-mayor/news/�261-17/�mayor-de-blasio-chancellor-fari-a-city-council-every-classroom-will-have-air
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income distribution (within cooler and hotter halves of the country to account for 
temperature differences). We also control for a quartic in school-level mean school 
year temperature experienced over the sample time period.33 As panel A of Table 6 
shows, black and Hispanic students report 1.7 percentage point (9 percent of a stan-
dard deviation) lower rates of school air conditioning penetration relative to white 
students, while lower income students report 2.8 percentage point (15 percent of 
a standard deviation) lower rates than higher income students. These disparities 
appear somewhat stronger in cooler areas of the country than in hotter areas, defined 
by dividing schools into those below and above the national median school year 
temperature.

Panel B of Table 6 also measures gaps in school air conditioning penetration, 
instead using an indicator having “inadequate” school air conditioning as an out-
come. We define schools with inadequate air conditioning as those where the aver-
age student responded that classrooms get too hot on hot days “Most of the time” 
or “All the time.” Black and Hispanic students are 1.6 percentage points more likely 
than white students to be in schools with inadequate air conditioning. Lower income 
students are 6.2 percentage points more likely to be in schools with inadequate air 
conditioning than their higher-income counterparts. These disparities are again sub-
stantially larger in cooler areas of the country than in hotter areas. Figure 7 further 
shows that racial gaps in school air conditioning access are not explained purely by 
zip code-level income differences.

33 In these regressions, we limit the sample to one observation per student and use all PSAT takers to get a more 
representative picture of national patterns.

Table 6—Heterogeneity in School Air Conditioning Access

All schools Cooler areas Hotter areas
(1) (2) (3)

Panel A. School AC
Black or Hispanic −0.017 −0.020 −0.016

(0.004) (0.006) (0.005)
Lower income −0.028 −0.034 −0.020

(0.005) (0.008) (0.005)

Panel B. Inadequate school AC
Black or Hispanic 0.016 0.022 0.015

(0.006) (0.012) (0.006)
Lower income 0.062 0.082 0.039

(0.008) (0.016) (0.006)

Observations 22,347,878 11,176,342 11,171,536

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses. Each coefficient 
comes from a separate regression of school air conditioning penetration rate (panel A) or an indicator for inadequate 
air conditioning (panel B) on the listed subgroup indicators. Inadequate air conditioning is defined as the average 
student’s response that on hot days classrooms are too hot to learn “most of the time” or “all of the time.” The ref-
erence groups in each panel are white students (top row) and higher income zip codes (bottom row). Lower income 
refers to students living in below median income zip codes within hotter and cooler areas. Each regression controls 
for a quartic in school-level mean temperatures over the entire time period. Cooler and hotter areas identify schools 
whose long-term mean temperatures are below or above the median. The sample comprises one observation from 
each PSAT-taker from the high school classes of 2001 to 2014.
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B. Heterogeneous Impacts of Heat

Heat exposure has heterogeneous impacts by race, income, and geography, which 
we show in Table 7.34 As panel A shows, the impact of prior year heat on black 
and Hispanic students is three times larger than the impact on white students. The 
impact of prior year heat on students in lower income zip codes is twice as large as 
on those from higher-income zip codes.35 The last two columns split the sample into 
high schools with below and above national median school year temperatures. Even 
though cooler areas of the country are less likely to experience extreme heat, stu-
dents in these areas seem to experience more learning disruption per unit of extreme 
heat, consistent with lower average levels of defensive investments. Each school day 
above 90​°​F has more than three times the negative impact on test scores in cooler 

34 We find no evidence of heterogeneity by student gender.
35 Measurement error may imply that these racial and income gaps in heat’s effects are, if anything, somewhat 

understated. The last four columns of Table A3 suggest that measurement error may generate more underestima-
tion in heat’s effects for black and Hispanic students and low-income students than their white and high-income 
counterparts. If weather sensors were immediately adjacent to high schools, these estimates suggest that heat’s 
impacts would be about 25 percent larger for minority and low-income students but largely unchanged for white 
and high-income students.

Figure 7. School Air-conditioning by Percent Black or Hispanic 

Notes: This figure is a binned percentile plot of high school air conditioning penetration rates as implied by student 
survey responses, by percentile of the school-level percent black or Hispanic distribution. It plots residual varia-
tion after controlling for average daily maximum temperature by school and average income by zip code between 
1997 and 2012.
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areas than on those in hotter areas.36 We also see suggestive evidence that heat is 
more damaging to achievement in more humid areas of the country.37

Panel B shows cumulative impacts measured by adding coefficients from the pre-
vious four years of heat exposure. Experiencing 1​°​F hotter school years over the 
past four years has a nearly 80 percent larger impact on black and Hispanic students 
than on white students. The impact of one additional day above 90​°​F in each of the 
preceding four school years has a 40 percent larger impact on black and Hispanic 
students than on white students. Interestingly, four-year cumulative impacts of heat 
exposure do not appear to vary by zip code income as much as one-year impacts 
do. The cumulative effects of a 1​°​F increase in school year temperatures are nearly 
twice as high in cooler areas, while the cumulative impact of each year having an 
additional day above 90​°​F is five times larger in cooler areas.

36 In cooler areas, the observed impact of heat could be driven partly by higher temperatures generating an 
increased number of otherwise scarce pleasant days for students to skip school. That days above 90​°​F show neg-
ative impacts and are too hot to be considered pleasant likely implies that that channel is not the only explanation 
of heat’s effects.

37 Though heat indices accounting for humidity are not available from our weather sensor data, Table A8 esti-
mates heat effects separately by typical humidity and finds that heat appears more damaging in humid areas than 
in arid areas.

Table 7—Heterogeneity by Race, Income, and Geography

Black or Lower Higher Coolest Hottest
Hispanic White income income areas areas

(1) (2) (3) (4) (5) (6)

Panel A. One year prior
Mean temperature (°F) −0.320 −0.093 −0.217 −0.115 −0.215 −0.170

(0.043) (0.019) (0.034) (0.022) (0.047) (0.047)
Days above 90°F −0.072 −0.027 −0.067 −0.030 −0.082 −0.025

(0.015) (0.008) (0.013) (0.010) (0.029) (0.013)

Panel B. Cumulative impact
Mean temperature (°F) −0.516 −0.292 −0.348 −0.446 −1.312 −0.712

(0.217) (0.151) (0.159) (0.180) (0.358) (0.236)
Days above 90°F −0.277 −0.197 −0.222 −0.241 −0.621 −0.122

(0.070) (0.054) (0.050) (0.063) (0.168) (0.067)

Panel C. Average heat
Mean temperature (°F) 68.8 64.2 65.8 65.8 58.1 73.5

Days above 90°F 15.7 10.6 12.5 11.8 3.9 20.5

Observations 6,023,145 12,161,058 10,658,547 10,234,301 10,535,013 10,511,435

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses. Each coefficient 
comes from a separate regression of hundredths of a standard deviation in PSAT total (math plus reading) scores 
on the weather measure(s) shown. The first row in panel A measures mean temperature using the daily maximum 
temperature from school days in the 365 days preceding the PSAT take. The second row in panel A measures the 
number of such school days above 90 °F and controls for the number of days in other temperature ranges, so that 
days in the 60s are the reference category. The first and second rows in panel B measure the cumulative impact of 
heat by summing lagged coefficients from each of the four years preceding the PSAT take. All regressions include 
student fixed effects and fixed effects for each combination of cohort, test date, and take number. The sample com-
prises all students from the high school classes of 2001–2014 who took the PSAT more than once. Columns 3 and 
4 contain students living in below and above median zip code-level income within below and above median tem-
perature areas.
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The achievement of minority and lower income students suffering more from heat 
exposure is consistent with minority households and high-minority schools having 
fewer resources to make defensive investments, either ex ante or ex post (Graff Zivin 
and Neidell 2013, Kahn 2016). Wealthier students may be able to compensate for 
lost learning time by obtaining additional instruction from their parents or private 
tutors. Such students may also be more likely to attend schools where teachers have 
better capacity to compensate for lost learning time by adjusting lesson plans or 
adding more instructional time to the day.38 A simpler explanation for this heteroge-
neity is that minority and lower income students have less access to school air con-
ditioning, as we have shown, and home air conditioning, both of which help offset 
the negative impacts of heat. However, it appears that minorities and low income 
students also tend to live in historically hotter climates, which appear to feature 
other effective adaptations.39

The estimates in Table 7 allow us to compute the fraction of the racial achieve-
ment gap that is driven by a combination of the heterogeneous impacts of heat by 
race and racial differences in heat exposure. To do this, we ask how much larger 
are racial achievement gaps than they would be if all students always experienced 
school day temperatures that appear optimal for learning (i.e., those in the 60s). 
Our estimates suggest that total exposure to days above 90​°​F lowers black and 
Hispanic students’ achievement by 0.043 standard deviations (−0.00277 standard 
deviations per additional day above 90​°​F × 15.7 days above 90​°​F). For white 
students, the comparable effect is 0.021 standard deviations (−0.00197 stan-
dard deviations per additional day above 90​°​F × 10.06 days above 90​°​F). This 
means that extremely hot days widen the racial achievement gap by approximately 
0.022 standard deviations, or about three percent of the 0.8 standard deviation gap 
in PSAT performance between black and Hispanic students and white students. If 
we also account for the cumulative impacts of school days between 70 and 90​°​F, 
then excess heat accounts for about seven percent of the racial achievement gap.40 
The physical environment that students are exposed to, as measured by school 
day temperatures, thus accounts for a small but nontrivial portion of the racial 
achievement gap.

Similarly, our analyses suggest that the disruptive influence of heat may play 
a causal role in generating cross-sectional differences in standardized achieve-
ment. The North-South gradient in PSAT performance is 0.023 standard devia-
tions per ​°​F hotter than average climate. This presumably captures many correlated 
factors, including differences in teacher quality, parental incomes, and rates of air 

38 Both research and media reports suggest teachers are aware of the adverse impacts of heat on student per-
formance and make efforts to offset some of those impacts ex post. Park (forthcoming) finds that New York City 
teachers selectively boosted grades of students who experienced hot exam sittings and scored just below pass/fail 
cutoffs.

39 While our residential air conditioning data is not student-specific, we note using RECS microdata that black 
and Hispanic households are 7 percent and 6 percent less likely, respectively, to have residential air conditioning 
for a given climate.

40 Though the estimated impacts of school days between 70​°​F and 90​°​F are smaller and noisier than those from 
days above 90​°​F, the cumulative coefficient on such days for black and Hispanic students is −0.0004 standard 
deviations, and they experience nearly 84 such days a year. The estimated impact of such days on white students is 
zero (out to four decimal places).
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conditioning. Our estimate of the causal (cumulative) impact of a 1​°​F hotter climate 
on learning is approximately −0.0056 standard deviations at current average lev-
els of air conditioning (column 4 of Table 4). This suggests that up to 24 percent 
(−0.0056/0.023) of the North-South gradient in PSAT scores may be attributable 
to the causal impact of a hotter climate. This most likely overstates heat’s contri-
bution to that gradient, given the positive correlation between hotter climate and 
levels of air conditioning, but it also suggests that a nontrivial portion of existing 
cross-sectional differences in learning may be caused by differences in the thermal 
conditions under which learning occurs.

V.  Conclusion

We provide the first evidence that cumulative heat exposure inhibits cognitive 
skill development and that defensive investments such as school air condition-
ing may mitigate this effect. Our findings imply that the physiological impacts 
of heat directly interfere with learning. This work highlights the understudied 
role that students’ and teachers’ physical environments play in generating educa-
tional outcomes. It also highlights the extent to which disparities in such physical 
environments contribute to inequality in educational outcomes such as the racial 
achievement gap. The results allow us to estimate the value of one potential public 
investment, school air conditioning, that may help reduce such gaps.

Evidence that heat exposure affects human capital accumulation points to a poten-
tially understudied channel through which heat may affect macroeconomic growth. 
A variety of recent papers have documented clear connections between country-level 
temperature fluctuations and growth, but the mechanisms explaining that connection 
have remained a matter of speculation (Dell, Jones, and Olken 2012; Burke, Hsiang, 
and Miguel 2015). Hypothesized channels include the negative impacts of heat on 
physical health and on labor productivity, particularly for physically intensive occu-
pations (Hsiang 2010, Heal and Park 2016). Our evidence suggests that heat not 
only interferes with the physical capabilities of a nation’s workforce but also with 
its cognitive capacities, and most crucially with the rate at which valuable skills are 
accrued by the workforce over time.

Understanding the causal relationship between cumulative heat exposure and 
learning is of heightened policy relevance given the accelerating warming in most 
parts of the world, and given that the overwhelming majority of the world’s pop-
ulation does not yet have access to air conditioning (Davis and Gertler 2015). 
Based on current estimates of projected warming in the United States, we engage 
in the following thought experiment: By 2050, how much heat-related learning 
disruption can we expect for the average high school student, relative to a student 
attending high school in 2010? Median climate change scenarios for the contig-
uous United States predict average warming of roughly 5​°​F by 2050. To gener-
ate a summary measure of the impact of climate change on future learning, we 
take the average treatment effect in ​°​F terms from above (0.006 standard devia-
tions) and multiply by the extent of predicted mid-century warming (5​°​F), yield-
ing an estimate of 0.03 standard deviation lower achievement, or approximately 
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10 percent of the average learning achieved in a given school year. Without further 
investments in school infrastructure, climate change would likely also result in a 
further widening of current racial achievement gaps.41

Further questions about the impact of heat on learning remain. The average 
American student experiences approximately 12 school days above 90​°​F per year, 
whereas the average Indian student experiences over 100 such days annually. What 
portion of the achievement gap between hot and cool countries is explained by the 
direct impact of heat exposure on learning documented here? Do these impacts on 
cognitive skill and learning have longer-term impacts on students’ economic out-
comes, affecting rates of economic mobility and convergence? Other than school 
air conditioning, what alternative investments or actions can be taken to mitigate 
the impacts of heat on learning? While it is possible that individuals in hotter cli-
mates are better acclimated and thus experience reduced sensitivity per unit of heat 
exposure, given the much lower levels of air conditioning and the potential for other 
correlated health or nutritional impacts, we speculate that our estimates represent a 
conservative appraisal of the inhibiting influence of a hotter climate on human cap-
ital development. We hope future work addresses such questions.
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