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Both across and within countries, people living in hotter  
climates complete less formal schooling, score lower on stan-
dardized tests and exhibit worse economic outcomes than 

those living in cooler climates1–3. Such associations are important 
given the growing role of cognitive skill in income mobility and 
economic growth4–7, and because of current and expected changes 
to the Earth’s climate, which appear to influence macroeconomic 
growth8. Whether and how climatic factors causally affect human 
capital development remain, however, debated, in part because so 
many other institutional and economic factors are correlated with 
a warmer historical climate. Some argue that initial conditions 
during colonization influenced the institutions created in hotter, 
more disease-prone climates, leading to lower levels of human 
capital today9–11. Others emphasize the role of correlated impedi-
ments to agricultural productivity12,13, disease burden14 and child 
nutrition and health15, which may in turn change the incentive to 
pursue schooling16,17.

We propose a more direct mechanism that may operate alongside 
institutional, agricultural or other factors. Across a range of labora-
tory and field environments, temperature has been shown to affect 
working memory, stamina and cognitive performance18–20, and to 
lead individuals to reduce time spent engaging in labour activi-
ties21. This suggests that, in addition to the channels above, heat 
may directly affect students’ capacity to learn or teachers’ capacity 
to teach. Given vast international differences in thermal conditions 
experienced by students (Table 1), even small marginal effects of 
heat on learning could result in large educational disparities over 
time. Students in Indonesia and Thailand, for instance, experience 
over 200 days above 26.7 °C (80 °F) per school year, compared with 
approximately 40 such days in the United States and South Korea. 
Causal estimates of the returns to schooling suggest that small 
changes in educational achievement can result in persistent differ-
ences in lifetime earnings potential22. There is, however, limited evi-
dence on how heat exposure affects the rate of learning and human 
capital accumulation in the context of formal schooling3,23.

We provide evidence that heat exposure during learning peri-
ods directly impacts human capital accumulation, suggesting 
another channel through which climate is linked to macroeconomic  

development. To do so, we provide two sets of analyses, each 
using quasi-experimental research designs and incorporating 
region-specific academic calendars to measure temperature shocks 
that occur on school days preceding cognitive testing. The empirical 
designs focus on heat exposure during the school year (as opposed 
to momentary reductions in cognitive performance due to tempera-
ture on the day of assessment) and exploit year-to-year variation in 
weather within a given region to isolate the causal impact of hotter 
school years on learning.

The first analysis uses test score data from 58 developed and devel-
oping countries participating in the Programme for International 
Student Assessment (PISA) between 2000 and 2015. PISA’s tests are 
designed to measure formal learning in mathematics, reading and 
science in nationally representative samples of 15 year olds. We find 
that students in school during hotter periods score worse on these 
exams than their peers in the same country who are schooled in 
cooler periods. The effect of years with more hot days (above 26.7 °C) 
on subsequent performance persists even when adding controls for 
changes in economic conditions (for example, per-capita income) 
and possible spurious correlation between regional time trends in 
warming and educational performance. To isolate the causal impact 
of heat exposure on learning, we link within-country temperature 
fluctuations over time to within-country fluctuations in test scores, 
controlling for country- and time-varying confounds. Regression 
equations, identifying assumptions and a series of robustness checks 
are presented in the Methods and Supplementary Information.

Exploiting variation in the timing of hot days within a given cal-
endar year, we provide suggestive evidence on the potential mecha-
nisms at play. Heat on school days before PISA exams lowers test 
scores while heat on non-school days (for example, weekends and 
summer vacation) has little effect, consistent with our hypothesis 
that heat directly interferes with learning time. In addition, includ-
ing controls for potential correlated shocks to agricultural yields 
does not affect the magnitude or significance of these findings. 
Specifically, the effects are robust to controlling for hot days dur-
ing region-specific rice-growing seasons as well as time-varying, 
country-level measures of agricultural employment, suggesting that 
the effects of hot temperature are not driven solely by correlated 
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shocks to nutrition or time reallocation decisions in response to 
correlated changes in economic incentives to pursue schooling.

Even with a rich set of controls, the range of countries in our data 
implies that these effects could be driven by other correlated mecha-
nisms noted above, particularly in lower-income, agrarian econo-
mies. The second analysis therefore focuses on the United States, 
a highly developed, non-agrarian setting where nutrition and agri-
cultural income-related channels seem less likely to be empirically 
first order in explaining the impact of heat on achievement. We use 
district-level annual mathematics and English language arts (ELA) 
test scores from over 12,000 US school districts, taken from the 
Stanford Education Data Archive (SEDA). These tests are manda-
tory components of school accountability systems, so that the sam-
ple of test takers represents the near-universe of American students. 
The tests are deliberately aligned with school curricula to measure 
learning that is meant to occur during formal schooling. Similar to 
the international data, we link within-district temperature fluctua-
tions over time to within-district fluctuations in test scores to isolate 
the causal effect of hotter temperature during the school year.

We find that US students in school during hotter years score 
worse than peers in the same district schooled during cooler peri-
ods. Consistent with the international evidence and the hypothesis 
that heat interferes with learning, we find that heat on school days 
entirely drives our results. These results are robust to the inclu-
sion of controls for district-level changes in school funding and 
demographic composition, potential spurious correlation between 
regional warming patterns and trends in educational achievement, 
and controls for exam-day temperature.

Across both sets of analyses, we find that the marginal dam-
age associated with hotter temperature appears to be larger for 
lower-income populations, consistent with previous work on cli-
mate adaptation24. These results suggest that the effects of hot tem-
perature may be regressive not only across but also within countries, 
consistent with recent work3,25. In the United States, heat’s effects 
appear to be larger for racial or ethnic minorities and students in 
lower-income school districts, who probably have less access to 
potentially compensatory resources. We also present evidence sug-
gesting that the effect of heat exposure during learning periods 
on achievement is larger for younger students. The effect of heat 

on children may be more pronounced if children rely more heav-
ily than adults on well-functioning institutions to enable effective 
avoidance behaviours or carry out necessary protective investments. 
These and other reasons suggest that children may be more sus-
ceptible to hyperthermia and heat exhaustion26, but so far there has 
been little evidence regarding the differential impact of heat expo-
sure on learning across age groups.

We note three observations about these analyses. First, they 
study the impact of heat on learning, rather than momentary reduc-
tions in cognition that may arise from temperature stress. Existing 
evidence suggests that many factors, including temperature20,23, air 
pollution27, sleep deprivation28 and attentional capture29, can affect 
short-run cognition. The mechanism studied here does not operate 
through such short-term reductions in cognition during test taking 
or in the immediate lead up to test taking, and controls for the pos-
sibility of correlation between heat exposure during learning peri-
ods and hot temperature during a subsequent exam. The outcome 
measures are standardized assessments designed to capture cumu-
lative learning throughout formal schooling, as opposed to tests of 
raw intelligence or cognitive capacity that are highly sensitive to 
test-taking conditions, in contrast with previous studies23.

Second, these results encompass students in both the develop-
ing and developed world, presumably with varying levels of adapta-
tion investment. Previous studies found that the effects of climatic 
shocks on health and economic outcomes vary substantially by 
income or previous exposure2,24,30, and that investments such as air 
conditioning may be effective at mitigating heat-related impacts31. 
Given vast differences in the rate of air conditioning across coun-
tries, and notably between the United States and most other coun-
tries, it is important to assess the external validity of existing United 
States-based findings3,23. Recent survey evidence suggests that, 
whereas 90% of US households have some form of air condition-
ing, only 75, 19 and 13% of households in Australia, Sweden and 
Mexico, respectively, have air conditioning32,33. This study suggests 
that the smaller macro-level effects of temperature documented in 
developed economies30 may mask substantial heterogeneity within 
these countries. Third, we suggest a seemingly universal physiologi-
cal channel through which heat affects human capital accumulation, 
in contrast with an older and in some cases racially charged litera-
ture arguing that the association between climate and human capital 
is driven by genetic or cultural factors. Such literature claimed that 
those living in tropical countries were genetically and culturally lazy 
or otherwise disinclined to engage in cognitively intensive activi-
ties34,35. The unfortunate implications of this work may have inhib-
ited discussion of a simpler and more policy-relevant explanation 
for the observed associations between heat and human capital. We 
suggest that the universal physiological burden of heat reduces stu-
dents’ capacity to learn and teachers’ capacity to teach, independent 
of intelligence or disposition. Hotter climates may thus interfere 
with economic development by reducing the human capital stock 
of nations, which implies that investments aimed at protecting stu-
dents from heat exposure may confer important economic benefits, 
particularly in hotter, poorer countries.

Results
International analysis. Our first analysis explored the relationship 
between heat exposure and standardized PISA performance. The 
sample comprised exam records from 58 countries that participated 
in PISA, which is administered by the Organisation for Economic 
Co-operation and Development and has provided internationally 
harmonized exams to nationally representative samples of 15 year 
olds every 3 years since 2000.

Our sample spanned a wide range of incomes and average cli-
mates, including poor tropical countries such as Vietnam and 
Thailand, as well as many richer temperate countries such as South 
Korea, France and New Zealand. The average per-capita income 

Table 1 | Heat exposure in selected PiSA countries

Country School 
days > 26.7 °C 
(80 °F)

Per-capita 
income (US$)

Average 
PiSA score

Indonesia 243 2,180 −1.17

Thailand 203 3,937 −0.76

Brazil 122 7,043 −1.08

Mexico 140 8,160 −0.87

Vietnam 118 1,894 0.09

Israel 83 27,759 −0.40

United States 44 46,247 −0.08

South Korea 36 19,467 0.35

Spain 20 25,224 −0.14

Turkey 20 8,899 −0.59

France 11 34,616 −0.01

Netherlands 5 45,164 0.18

The school day measures report the average annual number of school days with a temperature 
above 26.7 °C (80 °F) experienced by each country during our sample period from 1995–2015. 
Per-capita income reports the average per-capita income in constant US$ over the same time 
period using data from the World Bank. The normalized PISA score reports the average normalized 
overall PISA score within each country over our sample period.
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across the countries in our sample was US$25,962 in current US 
dollars (Supplementary Table 1), with some as low as $662 per cap-
ita (Kyrgyz Republic) and some as high as $80,857 (Luxembourg). 
The countries in our sample are plotted in Fig. 1, and represent 
approximately 144 million 15–19 year olds across the participating 
countries.

Our empirical design leveraged random variation in tempera-
ture within a given country over multiple years. While unobserved 
determinants of student achievement may be correlated with 
average climate in the cross-section, year-to-year fluctuations in 
temperature within a country are plausibly random, particularly 
when adjusting for correlated global or regional trends in warm-
ing and development. Our strategy compared deviations from 
country-specific averages in PISA performance with deviations 
from country-specific average temperature, controlling flexibly 
for other time-varying factors including precipitation and share of 
labour force in agriculture. We focused on the impact of the number 
of days with temperatures above 26.7 °C (80 °F), noting that previ-
ous studies of heat on cognitive performance and other behavioural 
outcomes found adverse impacts beginning around 26.7 °C (80 °F) 
(refs. 3,20,23). Additional details regarding the data and empirical 
strategy are provided in the Supplementary Information.

We found that hotter temperatures in the years leading up to the 
PISA exam negatively impacted student performance. Each addi-
tional day above 26.7 °C (80 °F) during the 3 years preceding an 
exam lowered scores by 0.18% of a standard deviation (P = 0.007; 
95% confidence interval (CI) = −0.22 to −0.04; Fig. 2). We mea-
sured hot days over 3 years to maintain consistency with the peri-
odicity of the PISA exams. A one-standard-deviation increase in 
hot days conditional on country and year fixed effects amounted 
to 14 school days. Cold days had statistically insignificant impacts 
on performance (β = 0.07; P = 0.517; 95% CI = −0.14 to 0.28). These 
results were robust to the inclusion of continent-specific tempera-
ture trends, which suggests that they were not driven by spurious 
correlation between regional warming patterns and long-run trends 
in educational achievement, as well as specifications that allow for 
different functional forms of temperature.

To provide evidence on potential mechanisms, we assessed the 
impact of heat that occurred during three sets of mutually exclu-
sive days of the year for each country in our sample: weekdays dur-
ing the school year (henceforth, school days), weekends during the 
school year and summer vacation days. The effect of hot tempera-
ture on learning appeared to be driven almost exclusively by hot 
school days (Fig. 3a). Each additional hot school day lowered scores 
by 0.22 standard deviations (P = 0.002; 95% CI = −0.36 to −0.08; 
Supplementary Table 2). A Wald test indicated that the difference in 

the impact of hot school days and hot non-school days (F1,57 = 3.41; 
P = 0.07) was marginally significant.

To further probe whether heat impacts learning through other 
correlated shocks, including the effects of heat on agricultural 
productivity, we ran analyses that controlled for hot days during 
the rice-growing season, based on the observation that rice is a 
major staple crop in many of the poorer countries in our sample 
(Supplementary Table 4). In the countries for which we had data on 
growing seasons, we found that hot school days, controlling for the 
number of hot days during the rice-growing season, still appeared 
to reduce student performance by 0.31% of a standard deviation 
(P = 0.013; 95% CI = −0.55 to −0.07), whereas hot growing season 
days had statistically insignificant impacts (β = −0.297; P = 0.322; 
95% CI = −0.90 to 0.31). Furthermore, the findings are robust to 
including controls for changes in per-capita income, share of labour 
force in agriculture, and female labour force participation, suggest-
ing that they are probably not driven solely by correlated shocks to 
(gender-specific) economic incentives for educational investment17.

Splitting the sample into richer and poorer countries (above and 
below the mean per-capita income in 1995 in our sample; listed 
in Supplementary Table 5), we found that temperature exerts a 
significant impact in poorer countries (β = −0.14; P = 0.001; 95% 
CI = −0.22 to −0.07; Fig. 3a) but less so in richer ones (β = −0.024; 
P = 0.733; 95% CI = −0.17 to 0.12; Fig. 3a), consistent with lower 
levels of adaptation and/or other channels (for example, conflict36) 
through which heat can affect student outcomes in developing 
countries.

Taken together, these results provide further evidence consis-
tent with the claim that hotter temperature during learning periods 
exerts a negative and casual impact on human capital accumulation. 
While these reduced form effects do not on their own demonstrate 
the mechanisms through which such impacts arise, they are con-
sistent with the possibility that a proportion of the effect is driven 
through heat’s disruptive impact on learning.

To better understand the extent to which our results are driven by 
physiological channels, we conducted a second set of analyses using 
more spatially resolved data from a highly developed, non-agrarian 
setting (where non-physiological factors are plausibly less influ-
ential) and with a richer set of demographic and location-specific 
characteristics.

US analysis. Our second analysis examined data on standardized 
student achievement for over 12,000 US school districts between 
2009 and 2015 (Fig. 4). Drawn from SEDA37, these records comprise 
the near-universe of state-administered standardized mathematics 
and verbal assessments for third to eighth graders, representing 
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Fig. 1 | temperature exposure and PiSA scores. a, Average number of days with a maximum temperature above 26.7 °C(80 °F) over our sample period 
(1995–2015). b, Average normalized PISA score in terms of standard deviations across all subjects and years that countries reported scores for during our 
sample period. There were 67 countries reporting at least one PISA score in our sample period. In a and b, the coloured countries are those that take the 
PISA exam. World basemap reproduced with permission from Esri.
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over 270 million test scores. These assessments, typically taken in 
March, April or May, vary across states but have been standardized 
by SEDA for national comparability. Similar to PISA exams, these 
tests are meant to capture cumulative learning specific to each state, 
grade and subject. These data are thus uniquely suited for assessing 
the effect of heat during formal instructional periods, in contrast 
with tests used in other US studies3,23. Our unit of observation is at 
the level of district by grade by subject by year, resulting in approxi-
mately 825,000 observations matched to district-level daily weather 
information using data from approximately 3,400 weather stations 
from the National Climatic Data Center. To account for possible dif-
ferences in school year heat arising from regional differences in start 
and end dates, we used state-specific academic calendars, as repre-
sented by the largest urban district in each state.

We again exploit random variation in year-to-year temperature 
within a given district over time to account for potential corre-
lation between unobserved determinants of educational achieve-
ment and average climates across districts. For instance, schools in 
the Southern United States typically perform worse than schools 
in the Northeast, but many factors other than climate, includ-
ing teacher quality and legacies of segregation, may affect this 
cross-sectional relationship. The number of hot days during any 
given school year within a particular district, however, is plausibly 
exogenous, especially when taking aggregate (regional) warming 
patterns into account.

We found that students who experience hotter temperatures 
during the school year before their exams exhibit reduced learn-
ing. Each additional day with a temperature of 26.7 °C or hotter 
reduces achievement by approximately 0.04% of a standard devia-
tion (Fig. 2 and Supplementary Table 6; P = 0.071; 95% CI = −0.07 
to 0). Our measures of significance are robust to correlation in 
error terms within any given state, which typically holds over 200 
school districts. This effect is concentrated among school days, with 
each additional hot school day lowering achievement by 0.07% of 
a standard deviation (Fig. 3b; P = 0.01; 95% CI = −0.12 to −0.02). 
Similar to the international analysis, heat on non-school days, such 
as weekends and summers, had no statistically significant impact 
on achievement (β = 0.015; P = 0.561; 95% CI = −0.04 to 0.06). A 
Wald test indicated a significant difference between the impact of 
hot school days and hot non-school days (F1,3394 = 5.54; P = 0.019). 
These estimates imply that a student who experiences an additional 
school week (five school days) with daily maximum temperatures 
above 26.7 °C will learn 0.35% of a standard deviation less than they 
otherwise would have during that school year, which is equivalent 
to reducing teacher quality by about 3–4% of a standard deviation38.

The impact of heat exposure on learning is not confounded by 
precipitation, exam-day weather shocks, changing demographic 
compositions or resource levels of school districts, or spurious cor-
relation between regional warming patterns and trends in educa-
tional achievement. That only hot weekdays during the school year 
reduce learning suggests once again that the set of mechanisms 
probably includes a reduction in contemporaneous educational 
inputs, whether in terms of the amount or intensity of learning time.

In the United States, the impact of heat on mathematics achieve-
ment is about three times larger than its impact on ELA achieve-
ment. Each additional hot school day lowers mathematics scores 
by 0.11% of a standard deviation (columns 3–4 of Supplementary 
Table 6b; P = 0.002; 95% CI = −0.17 to −0.04) but lowers ELA 
scores by less than 0.04% of a standard deviation (columns 5–6 of 
Supplementary Table 6b; P = 0.099; 95% CI = −0.09 to 0.01). There 
is little evidence that heat on non-school days affects achievement 
in either subject.

Importantly, hot temperature affects disadvantaged students 
much more than advantaged ones. Heat has substantially larger 
impacts on the achievement of students in lower-income school 
districts and little impact in higher-income districts, defined  
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Fig. 2 | impact of temperature on PiSA and SeDA exam scores.  
a, Impact of days below 15.5 °C (+0.07 standard deviations; P = 0.517; 
95% CI = −0.14 to 0.28), days between 21.1 and 26.7 °C (−0.06 standard 
deviations; P = 0.316; 95% CI = −0.17 to 0.56) and days greater than 
26.7 °C (−0.18 standard deviations; P = 0.007; 95% CI = −0.31 to −0.05) 
on performance on the PISA exams. b, Impact of days below 15.5 °C 
(−0.012 standard deviations; P = 0.335; 95% CI = −0.035 to 0.012), days 
between 21.1 and 26.7 °C (−0.018 standard deviations; P = 0.226; 95% 
CI = −0.05 to 0.011) and days greater than 26.7 °C (−0.043 standard 
deviations; P = 0.03; 95% CI = −0.08 to −0.004) on performance on 
the SEDA exams. In a and b, the shaded areas connect coefficients 
representing the effect of an additional school day in each temperature bin 
on subsequent achievement in hundredths of a standard deviation, with 
light to dark shading corresponding to 90, 95 and 99% CIs, respectively. 
Standard errors are in parentheses. Sample sizes are n = 281 and 
n = 825,416 for a and b, respectively.
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respectively as those in districts with federally subsidized lunch 
rates below and above 50%. Each additional hot school day low-
ers achievement in lower-income districts by 0.12% of a stan-
dard deviation but has little discernible effect on achievement 
in higher-income districts (Fig. 3b and Supplementary Table 7; 
P = 0.002; 95% CI = −0.19 to −0.04). Each hot school day lowers 
the achievement of Black and Hispanic students by 0.10–0.12% 
of a standard deviation but has no statistically significant impact 
on non-Hispanic white students (Supplementary Table 8; Black 
students: P = 0.017; 95% CI = −0.19 to −0.02; Hispanic students: 
P = 0.012; 95% CI = −0.21 to −0.03; non-Hispanic white students: 
β = −0.009; P = 0.593; 95% CI = −0.04 to 0.02). One week above 
80 °F for the average Black or Hispanic student reduces learning by 
an amount equivalent to reducing teacher value added by 5–6% of 
a standard deviation.

The effect of hot school days is also larger for younger stu-
dents than for older students. Each additional such day lowers the 
achievement of third to fifth graders by 0.08–0.13% of a standard 
deviation but has a statistically insignificant impact on those in 
grades six to eight (Fig. 3b and Supplementary Table 7; P = 0.003; 
95% CI = −0.17 to −0.03). This is consistent with previous evidence 
suggesting that younger children are likely to be more adversely 

affected by thermal stress, either due to physiology or behaviour26. 
However, this could be due to other factors, such as the potentially 
lower prevalence of school air conditioning in elementary schools 
relative to middle schools.

Discussion
Taken together, these results suggest a different perspective on 
how climate shapes human cognitive capacity. Thermal conditions 
in the physical learning environment appear to causally influence 
cumulative learning: a fact not yet documented in the voluminous 
literature on cross-country comparisons in student achievement39. 
It appears that heat exposure during the learning period, all else 
being equal, directly slows the rate of human capital formation, 
in part through persistent disruptions to the learning process. As 
noted above, the realized temperature environments facing stu-
dents across the world vary dramatically, suggesting important 
implications for our understanding of differences in educational 
achievement and human capital.
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Fig. 3 | Heterogeneity of hot temperature impacts. a, The first two 
columns show the impact on subsequent standardized achievement of 
hot (≥26.7 °C) school days (that is, weekdays during the school year) 
versus hot weekends, holidays and summer vacation days in the 3 years 
leading up to any given PISA assessment for all participating countries in 
our sample over the period 2000–2015 (n = 271). We show the impact of 
hotter school days (−0.22 standard deviations; P = 0.002; 95% CI = −0.36 
to −0.08) and hot non-school days (+0.03 standard deviations; P = 0.676; 
95% CI = −0.14 to 0.22) in the first two columns. Columns 3–6 show the 
corresponding effects for countries with above-mean (columns 3 and 4; 
n = 132) and below-mean income (columns 5 and 6; n = 150) in 1995 in 
our sample. We show the impact of hot school days (−0.099 standard 
deviations; P = 0.493; 95% CI = −0.39 to 0.2) and hot non-school days 
(+0.127 standard deviations; P = 0.394; 95% CI = −0.18 to 0.43) in richer 
countries, and of hot school days (−0.256 standard deviations; P < 0.001; 
95% CI = −0.36 to −0.15) and hot non-school days (+0.088 standard 
deviations; P = 0.342; 95% CI = −0.10 to 0.28) in poorer countries.  
b, The first two columns show the impact on subsequent standardized 
achievement of hot (≥80 °F) school days (−0.070 standard deviations; 
P = 0.01; 95% CI = −0.12 to −0.02) versus hot weekends, holidays and 
summer vacation days (+0.015 standard deviations; P = 0.974; 95% 
CI = −0.06 to 0.07) for all US school districts over the period 2009–2015 
(n = 825,416). Columns 3–9 show the effect of hot school days in schools 
with a federally subsidized lunch rate below (−0.118 standard deviations; 
P = 0.002; 95% CI = −0.19 to −0.04) and above 50% (+0.017 standard 
deviations; P = 0.456; 95% CI = −0.03 to 0.06); for Black (−0.104 standard 
deviations; P = 0.017; 95% CI = −0.19 to 0.02), Hispanic (−0.118 standard 
deviations; P = 0.012; 95% CI = −0.21 to −0.03) and non-Hispanic white 
students (−0.009 standard deviations; P = 0.593; 95% CI = −0.04 to 
0.02) within each district; and for elementary (−0.103 standard deviations; 
P = 0.003; 95% CI = −0.17 to −0.03) and middle-school students (−0.027 
standard deviations; P = 0.249; 95% CI = −0.07 to 0.02) in each district, 
respectively (n = 273,466; 273,266; 183,060; 222,042; 733,219; 425,301 
and 400,095 for columns 3–9, respectively). In all columns in a and b, 
the shaded lines show the confidence intervals of our estimates, with 
light to dark shading corresponding to 90, 95 and 99% CIs, respectively. 
Consistent with the existing literature (for example, ref. 49), all coefficients 
in a and b can be interpreted as the effect relative to an additional day 
with a temperature in the range 15.5–21.1 °C (60–70 °F) on combined 
mathematics, verbal and science scores (a) or combined mathematics 
and ELA scores (b). In a and b, we provide our coefficient estimates and 
standard errors (in parentheses) beside each bar.
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We find heat exposure to be a plausible mechanism. It matches 
emerging findings on the effects of temperature on labour capac-
ity40,41, morbidity and mortality42,43 and short-run cognition20,23. 
However, we note that this analysis does not imply that heat expo-
sure is the only mechanism at play: many others are probably rel-
evant in explaining the relationship between climate and levels of 
human capital across countries. Teasing apart the potential mecha-
nisms in greater detail (for instance, determining whether hotter 
temperatures drive student/teacher absenteeism and whether poor 
nutrition and hunger exacerbate heat-induced cognitive impacts, 
and understanding the extent to which these mechanisms interact) 
are important questions for future work.

Importantly, the magnitude of these disruptions appears 
to vary greatly across socioeconomic groups, both across and 
within countries. As shown in Fig. 3b, the effect of an additional  
26.7 °C day in US school districts in the lower third of average 
income is approximately −0.12% of a standard deviation (P = 0.002; 
95% CI = −0.19 to −0.04), while the effect in the top third is statisti-
cally indistinguishable from zero. Impacts are also larger for some 
racial or ethnic minorities, particularly Black and Hispanic students. 
This is consistent with evidence from the United States suggesting 
that school and home air conditioning status is correlated with stu-
dent race/ethnicity and income3, and suggests that climatic factors 
may contribute to longstanding racial/ethnic achievement gaps.

How large are these effects? Suppose we take the US estimates 
as a lower bound for the rest of the world, given relatively high 
rates of air conditioning there. Education researchers have, for 
instance, examined the impact of improving teacher quality or 
reducing class sizes on learning outcomes. Our US analyses sug-
gest that, even with relatively high levels of air conditioning, a 
school year with 30 additional days above 26.7 °C reduces learn-
ing by approximately 2.1% of a standard deviation. This is large 
enough to offset the gains of reducing class sizes by approximately 
3–4%, or to offset improving teacher quality by 20% of a stan-
dard deviation. For lower-income students, the effect of the same 
temperature event appears to be nearly three times larger. These 
sizable magnitudes suggest that the learning impacts of a hotter 
climate could result in large real consequences, especially given 
that students in many tropical economies regularly experience 
more than 100 such days per school year (Table 1). Put differently, 
greater heat exposure during the school year may lead students 
in Brazil to learn 6% less than their South Korean counterparts 
per year, which, over time, might explain around one-third of 
the difference in their PISA performance (see Supplementary 
Information for details of this calculation).

This perspective has important policy implications. It suggests 
that climate may have a more direct and persistent influence on 
economic growth than was previously appreciated. Human capital 
accumulation is central to national economic growth and individual 
economic mobility4,7, and current climatic conditions appear to slow 
the rate of human capital accumulation for some more than oth-
ers. This suggests that policies aimed at improving physical learn-
ing environments, whether in the form of electric infrastructure or 
low-income energy assistance, may pay larger dividends over time 
than was previously appreciated. These pro-growth, pro-adaptation 
policies may or may not include school air conditioning, which may 
improve student cognition as well as teacher attendance/retention, 
but which may also exacerbate the climate externality. Making such 
investments to facilitate learning in hotter environments may be 
particularly important in light of evidence suggesting that educa-
tion itself may be an important climate adaptation strategy44.

It also suggests that current estimates of the social costs of car-
bon may be understated. Existing integrated assessment models do 
not include direct impacts on human capital, and often model cli-
mate impacts as a non-accumulating reduction in the level of gross 
domestic product as opposed to cumulative growth rate effects. 
Adding these arguments to the damage function would prob-
ably shift the entire distribution of estimates to be more negative45. 
Accounting for within-country regressivity of these impacts, as sug-
gested by our findings, may also imply larger social costs of carbon 
estimates, regardless of one’s choice of pure rate of time preference 
or discount rate46.

methods
Data description. Global temperature data. We used separate temperature datasets 
for our global and domestic analyses, given varying geographic and temporal 
coverage. For the global analysis, which used PISA test scores from many different 
countries, we started with data from the National Oceanic and Atmospheric 
Administration’s Global Historical Climatology Network. This provided us with 
daily data from a network of more than 100,000 stations located in approximately 
180 countries. The data provided included daily maximum and minimum 
temperatures and total daily precipitation. We collected data starting in 1995 and 
pulled all of the available data for the countries that appeared in our PISA sample.

To count school versus non-school days, we excluded weekend days from the 
school days and assigned each country a dummy called summer on the days that 
students in that country were typically on summer vacation. When schools started 
on a range of days (for example, the first 2 weeks of September), we choose a date 
at or adjacent to the midpoint of the range. We separately identified weekends that 
occurred during the school year and those that occurred during the summer so 
that we could examine whether heat on non-school days during the school year 
had different effects from heat on non-school days outside of the school year.

To create our temperature bins, we counted the number of days with a 
maximum temperature, in 5.5 ºC (10 °F) bins, from –17.7 to 60 ºC (0–140 °F), by 

Average number of days with a
maximum temperature of >80 °F

0–25

a

25–50
50–75
75–100
100–175
175–250
250–365

Average z score
−1.27 to −0.50
−0.50 to −0.15
−0.15 to 0.15
0.15 to 0.25
0.25 to 0.91

b

Fig. 4 | temperature exposure and SeDA scores. a, Average number of days with a maximum temperature above 26.7 °C (2009–2015) in each US county 
in our sample. b, Average z score across all subjects and years within each US county in our sample. Missing counties (white) are those omitted from the 
SEDA data for confidentiality reasons. Basemap data come from the US Census. World basemap reproduced with permission from Esri.
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station. We grouped all days below –17.7 ºC (0 °F) into a single bin. Each country 
was then assigned the weighted average number of days (across all stations) in each 
temperature bin in each year. Weights were based on the population living within 
15 km of the station, as measured by LandScan population data. We weighted 
stations based on their population in 2000, at the beginning of our sample. We also 
created lagged variables that counted the number of days in each bin in each of five 
lagged years, as well as the cumulative days in each bin over the previous 1–5 years. 
The cumulative lag variable did not count the number of days in a given bin in the 
contemporaneous year. For additional information about the weather data used in 
the PISA sample, see the Supplementary Information.

US temperature data. Daily temperature data came from the National Oceanic 
and Atmospheric Administration’s Daily Global Historical Climatology Network, 
which includes station-level data for thousands of weather stations across the 
United States. We focused on the subset of nearly 3,400 weather stations with 
daily temperature data available for at least 95% of the days from 1 July 2004 
to 30 June 2015 (the time period covering the potential test-taking dates of our 
sample). Doing so allowed us to assign each school district a single, stable weather 
station over the entire time period, which avoided endogeneity concerns driven 
by the possibility that stations coming online or going offline were somehow 
correlated with local population growth, economic conditions or temperature 
conditions in ways that might contaminate our estimates47. We imputed the small 
proportion of missing daily observations with those from the nearest stations 
with non-missing data.

We assigned each school district to the weather station nearest to that district’s 
centroid, resulting in an average distance of 9.6 miles between each district’s 
centroid and the weather station being used to measure temperature at that district. 
We defined our primary heat exposure variable as the number of days for which 
the average daily maximum temperature exceeded a given multiple of 5.5 ºC (10 °F) 
from 1 June to 28 February in the year before the test. We used daily maximum 
temperature because schooling occurs during the daytime when such temperatures 
usually occur. Of course, to the extent that daytime maximum and night-time 
minimum temperature is correlated, some of our effects may have been driven by 
disrupted sleep. We have not taken a stand on whether sleep is a factor or not, as 
both in-class and at-home disruptions through learning that are brought about by 
the physiological effects of heat are of interest.

We used the June to February time period because the exact timing of SEDA’s 
standardized exams varies by state and year but almost always occurs between 
March and May. We focused particularly on temperature experienced on school 
days, treating non-school days (weekends and all summer days between 15 June 
and 15 August) as separate sources of variation. We also used the weather stations 
to construct data on test date temperature, rain and snowfall, as well as cumulative 
rain and snowfall exposure, over the year before the test, which helped account for 
potential independent effects of such precipitation.

PISA data. PISA assessments are designed to capture cumulative skills developed 
during formal schooling (for example, arithmetic, basic scientific concepts and 
reading comprehension), and to be comparable across countries. Our data on 
average PISA scores by country came from the National Center for Education 
Statistics (NCES) International Data Explorer tool. NCES assembles average 
country scores by year in mathematics, science and reading from the PISA 
microdata provided by the Organisation for Economic Co-operation and 
Development. We followed the advice of NCES and did not compare mathematics 
and science scores from 2000 or 2003 (for science) with scores from later years 
because of changes in the PISA methodology. We did not modify the raw PISA 
data from NCES except to drop countries from the sample for which we did not 
have temperature data or for which we only had 1 year of PISA data. We excluded 
PISA data from sub-national units (from individual states within the United States, 
for example). A minimum of 5,000 students were sampled in each country that 
participates unless the total population of 15-year-old students was less than 5,000, 
in which case all students were tested. Some large countries sample more students. 
In total, more than 500,000 students took a PISA exam across all participating 
countries in 2015.

PISA scores were designed to have a global average of 500 and a student-level 
standard deviation of 100, which we used to compute standardized versions of 
each country’s mathematics, science and reading scores. In any given year, there 
was wide variation in performance across countries. On the 2009 PISA exam, 
for example, South Korean students averaged 546 points in mathematics while 
Indonesian students averaged 371 points. Our primary outcome measure was 
the average of each country’s three subject scores in any given year, standardized 
so that effects could be interpreted in terms of student-level standard deviations 
(similar to SEDA).

Summary statistics for the PISA sample. See Supplementary Table 1 for summary 
statistics for the PISA sample. On average, countries in our sample were 
hotter than the United States (experiencing 114 school days over the previous 
3 years above 26.7 ºC versus only 97 such days in the United States) and poorer 
(per-capita income = $26,000 versus $42,000) with lower PISA scores (normalized 
score = −0.28 versus −0.08). We also split the sample into rich and poor countries 

based on where a country’s per-capita income in 1995 ranked in our sample.  
We defined rich as countries that had a per-capita income in 1995 above $14,000 
(roughly the average in our sample for that year). Splitting the sample into rich 
and poor indicated that the rich sample was substantially cooler and wealthier 
and had a lower population of test takers than the poor countries. PISA scores 
were substantially better in the rich sample on average, with lower variance 
within the sample.

SEDA data. Data from SEDA were based on the standardized accountability tests 
in mathematics and ELA, administered annually by each state to all public school 
students in grades 3–8. SEDA combines information on the test scores in each 
school district with information from the National Assessment of Educational 
Progress, creating scores that are nationally comparable across districts in 
different states.

Our version of SEDA’s data spanned the school years ending 2009–2015 and 
contained elementary and middle-school students from approximately 12,000 
school districts across all 50 states. We observed a standardized measure of both 
mathematics and ELA achievement at the district-by-grade-by-year level. We 
observed this measure averaged across all test takers in a school district, as well as 
for some demographic subgroups. The particular standardization used implied that 
effect sizes could be interpreted in student-level standard deviations.

We used SEDA’s mean scores across all students and across racial/ethnic 
subsets of students. We focused on scores for non-Hispanic white, Black and 
Hispanic students, which SEDA reports separately for all school districts with 
a sufficient number of such students. Student race/ethnicity was based on the 
information that state education agencies receive from school districts, which in 
turn relies on students’ self-identification. We split school districts into lower or 
higher income based on whether more or fewer than half of the students received 
federally subsidized school lunches, which generally indicated a family income 
below the poverty line.

Other international data. In addition to temperature and PISA performance data, 
we collected data on a set of potentially relevant covariates for the countries in 
our sample. All of these data came from the World Bank’s World Development 
Indicators archive. We collected time-varying measures of the share of total 
employment in agriculture, per-capita income, the share of male and female 
employment in agriculture, total population and the share of the population made 
up by 15–19 year olds. The only data we modified related to the 15- to 19-year-old 
population share, which we combined with the total population to estimate the 
absolute number of 15–19 year olds in each country-year. We matched all of 
the data to temperature and PISA country-years using country International 
Organization for Standardization codes.

Empirical approach. Our econometric approach exploited the quasi-random 
variation within a given geography’s total exposure to days above 26.7 ºC (80 ºF) 
in the years between test takes. The geographic unit in PISA is a country, whereas 
in SEDA it is a school district. The time between test takes is 3 years in PISA and 
1 year in SEDA. To account for serial correlation in temperature shocks across 
geographies, we clustered standard errors at the relevant geographic unit. In all 
statistical tests, we assumed normality but did not formally test for it. All tests of 
significance were two tailed.

We estimated several versions of the base model:

�Zit ¼
X9

k¼1
βkTMAXikg þ σXit þ γt þ δi þ ωct þ ϵit ð1Þ

where �Zit
I

 is the normalized PISA score in country i and year t. TMAXikg is the total 
number of days with a maximum temperature in each of k degree bins in geography 
i in the gap g between exam takes. Xit is a vector of geography- and year-specific 
controls, including the total annual precipitation in the year of the exam as well 
as the gap year(s), the same set of k degree bins in the year of the exam and, in the 
case of the PISA data, the controls from the World Bank described above. The 
parameters δi and γt are geography and year fixed effects. ωct is a continent-specific 
time trend included in the PISA regressions. ϵit is the error term. We weighted each 
geography by the total number of 15–19 year olds in that country in the exam year 
in the PISA data, as calculated from the World Bank data, and by the students in 
each district taking the exam in the SEDA data.

Our variable of interest was β9 for the bin representing days over 26.7 ºC (80 ºF). 
Because we omitted the 15.5–21.1 ºC (60–70 °F) bin from our set of controls, the 
coefficient βk should be interpreted as exchanging 1 day over the relevant gap in the 
15.5–21.1 ºC (60–70 °F) bin for one >26.7 ºC (80 ºF).

Identification rests on the assumption that the number of days in any given 
temperature bin, and therefore the >26.7 ºC (80 ºF) bin we are interested in, 
varies randomly within a geographical region from year to year. This year-to-year 
variation results in random variation in the aggregate exposure that students 
experience in the lead up to their exams. To account for possible spurious 
correlation between regional warming trends and secular changes in educational 
outcomes, we included continent-specific trends in all regressions. We also include 
country-specific trends in Supplementary Table 9. Our approach is analogous to 
the now widely used binning of annual temperatures first described in ref. 48.
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School versus non-school days estimation. In our primary specifications, we binned 
all days in a year together. We also separately reported the results of the effect  
of school days above 80 °F and non-school days above 26.7 ºC (80 ºF). There,  
we estimated the following model:

�Zit ¼
P9

k¼1 βkTMAXschool
ikg þ P9

k¼1 ψkTMAXnon�school
ikg þ σXit

þγt þ δi þ ωct þ ϵit
ð2Þ

where the variables are as before but β reports the estimates of the impact of days 
while school is in session, while ψ reports the effects of non-school days.

Summer versus non-summer estimation. We distinguished school year days further 
by separating school year weekend days from school year non-weekend days.  
We estimated:

�Zit ¼
P9

k¼1 βkTMAXschool
ikg þP9

k¼1 ψkTMAXsummer
ikg

þ
P9

k¼1 ϕkTMAXschool weekend
ikg þ σXit þ γt þ δi þ ωkt þ ϵijt

ð3Þ

where the variables are as before but β reports the estimates of the impact of days 
while school is in session, while ψ reports the effects of non-school days.

Subject-specific estimation. Finally, we estimated subject-specific effects. There, we 
returned to the original estimating equation:

�Zits ¼
X9

k¼1
βkTMAXikg þ σXit þ γt þ δi þ ωct þ ϵit ð4Þ

However, we replaced �Zit
I

 with the subject-specific normalized score, �Zits
I

 for each 
of reading, science and mathematics in PISA and ELA and mathematics in SEDA. 
In each case, we calculated the normalized score in the way described above. 
In the PISA data, for both mathematics and science, we used the shorter panel 
to avoid data comparability issues due to changes in the PISA methodology in 
those subjects. To estimate the subject-specific effects of school and non-school 
days, we substituted �Zits

I
 into equation (2). For additional details on the 

empirical strategy, including robustness checks and regression tables, see the 
Supplementary Information.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The weather data that support the findings of this study are available from the 
National Oceanic and Atmospheric Administration (https://www.ncdc.noaa.
gov/). The international assessment data are available from PISA (https://www.
oecd.org/pisa/data/). The US assessment data are available through NCES, 
compiled by district, grade, subject and year at SEDA (https://exhibits.stanford.
edu/data/catalog/db586ns4974). Additional data at the country level, including 
employment shares and per-capita income, are available at the World Bank’s 
World Development Indicators archives (https://datatopics.worldbank.org/
world-development-indicators/wdi-archives.html).

Code availability
Custom code that supports the findings of this study is available from the 
corresponding author upon request.
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